
5. Documentation
This chapter provides additional information about the application to users, ad-
ministrators and programmers who might look to improve the application or
would want to understand its inner workings better.

This chapter can also be found on GitHub1.

5.1 User documentation
This section describes how the user can connect to the application, utilize their
Solid Pod and furthermore shows basic manipulation of the application data and
view creation.

The reader is encouraged to navigate through the user guide2 should they
have any problems following specific steps setting up the Solid environment.

5.1.1 Solid Pod setup
This subsection describes the requirements necessary to enable the application to
persist its data by utilizing the user’s Solid Pod. While the application can be used
without Solid Pods as illustrated in section 2.4, no data and view management
can be established, therefore severely limiting the functionality of the application.
The user is encouraged to read through the documentation and follow all the steps
outlined to familiarize themselves with the application and set up the environment
properly.

Preliminaries

The following sections are written for Solid Pods hosted at Inrupt3. This applica-
tion shall be usable with any Solid Pod providing service but the details regarding
its use might di�er.

We assume the reader has their own Solid Pod set up, if not, they are able to
create a new one for free on the registration page4.

Logging in with Solid Pod

To set up all permissions for the application, the user has to sign in to their Solid
Pod first via the application’s avatar button in the top right corner.

Figure 5.1: Avatar menu

1https://jaresan.github.io/simplod/documentation.pdf
2https://github.com/solid/userguide
3https://inrupt.net/
4https://inrupt.net/register

48

https://jaresan.github.io/simplod/documentation.pdf
https://github.com/solid/userguide
https://inrupt.net/
https://inrupt.net/register

Upon clicking on the login button, the user is required to choose their Solid
Pod provider either from the list provided or by specifying it themselves.

Figure 5.2: Picking Solid Pod provider

After the provider is chosen, the user is able to authenticate via the provider’s
login screen.

Figure 5.3: Provider login screen

When the login is successful, the user is requested to grant permission to the
application which would allow it to save and handle its data across the user’s
Solid Pod.

Figure 5.4: App permission prompt

49

If all of the above steps resolve correctly, the user is shown a positive feedback
message and able to start working with the application fully.

With all of the steps outlined above complete, the application shall have all
the permissions it needs to properly manage its data utilizing the user’s Solid
Pod.

Should the reader experience problems with the application data management,
they are encouraged to resolve the problems manually directly in their Solid Pod,
as outlined in Appendix A.

5.1.2 UI Elements
This subsection describes the layout of the application with a detailed explanation
of each interactive element available to the user.

Layout

Figure 5.5: Layout

Figure 5.5 displays the overview ”main screen” of the application. It is split
into three main parts:

• Top bar
Contains user information with project save status and functionality regard-
ing application settings and file handling. Right part contains additional
controls for the user, such as authentication and file sharing.

• Left part - Graph
Contains the graphical representation of the open data schema. Users are
able to view di�erent entities and their properties and the relations between

50

them. Upper-right part of the graph also contains shortcuts to certain func-
tionalities like showing all entities, clearing selection, and others. Described
in subsection 5.1.3.

• Right part - Entity list
A list view of the data displayed in the graph with additional controls.
Contains a search bar to allow users to quickly filter out entities by their
name. Described in subsection 5.1.4.

Project bar

Figure 5.6: Project status

Figure 5.6 contains the following:

• Project title
Title of the project. Allows the user to edit by directly clicking in the text
field.

• Change status
Displays current project change status based on whether the newest changes
are saved locally or in SOLID pod. Clicking the status text/icon saves the
current state of the project to the corresponding location.

Avatar menu

Figure 5.7: Avatar menu

Figure 5.7 contains the following:

• Run SPARQL Query
Opens a SPARQL query editor and runs the user generated query, display-
ing results.

51

• Share
Allows the users to share the project and set view permissions for other
users.

Figure 5.8: Share menu

Clicking the ”Share” item in Figure 5.7 opens Figure 5.8. These controls allow
the user to share the project in di�erent ways as follows:

• Data fetching links
Links used to fetch the data represented in the project. These links could
potentially be saved and used to retrieve specific data sets directly.

– YASGUI Query Tool
Opens YASGUI Query Tool5 with the query representing the project
loaded.

– CSV URL
Downloads the result set directly as a CSV if the endpoint properly
supports it by adding format=text/csv parameter to the URL.

– Direct Web URL
Represents a GET request that directly returns the data set selected
in the project.

– cURL POST Request
Since some of the endpoints might not be set up in a way that enables
GET requests, the user is also provided with the option of running a
cURL POST request that accepts CSV (Header ”Accept: text/csv”).
The endpoint has to support this functionality.

5https://yasgui.triply.cc/

52

https://yasgui.triply.cc/

• App links
Links regarding the project and its usage in the app.

– Direct application URL
On access, launches the application and loads the project from the
project file saved

– Current file URL
Displayed if the user has the project saved in a Solid pod. Remote
location of the file.

– Permissions
Allows the user to set the file permissions directly.
Private - Can’t be viewed by anyone else than the current user
Public/read - Can be viewed by anyone but not edited
Public/write - Can be edited by anyone

Settings

Figure 5.9: Settings menu

Clicking on ”Settings” in Figure 5.5 opens the settings menu displayed in Fig-
ure 5.9 containing the following:

• Show labels

Figure 5.10: Label

Turning this option on/o� allows the able to switch between human readable
names for the entities or their IRI definitions.
Figure 5.10 shows such an example with the labels disabled on the left and
enabled on the right.

53

Human readable names are only displayed if they are provided by the end-
point.

• Label language

Figure 5.11: Label language

Allows the user to choose a language of the displayed labels if available.
If the language selected is not available, the application defaults to display-
ing the English variant.
Figure 5.11 shows an example of English labels on the left and French on
the right.

• Application language
Language of the application interface. Czech and English are provided with
this work being published.

• View orientation
Allows the user to select between horizontal/vertical view for the setup of
the graph and the list screen.

File menu

Figure 5.12: File menu

Figure 5.12 allows the user to create a new project, save/load one or change the
project’s properties.

54

Figure 5.13: New file

Figure 5.13 shows new project window, allowing the user to create a new
project with fields as follows:

• Data schema URL
URL from which the data schema should be retrieved. This URL should
return a file in the format described in subsection 2.5.2.

• SPARQL Endpoint
URL of a SPARQL endpoint which will be queried for the data selected in
the application.

• Title
Title of the project

• Description
Additional textual description of the project.

• Create
Creates the project via the application, loading the data and populating
the graph and the list.

• From example
Users are also able to create a new project from a predefined set of examples
for testing purposes or getting to know the application. This set of examples
might not correspond to the examples displayed in Figure 5.13.

55

Figure 5.14: Save & load

Clicking on ”save” in Figure 5.12 opens the save menu with the following
items. Load menu is the same with opposite functionality:

• Download file
Downloads a file representing the project to the user’s disk. This file can
be than shared and distributed to allow users to load the same project in
the application.

• Save to browser storage
Saves the current state of the project to the browsers storage, allowing the
user to close the application and resume their work later. Due to the nature
of this application, only one file can be saved to the browser storage at one
time.

• Last file
Description of the last file saved in the browser storage in the format
”Project name @ DATE”.

• Solid pod

56

Figure 5.15: Solid pod

Unauthorized users see a button Login to Solid Pod.
Authorized users see a list of their files in the Solid Pod they are currently
logged in.
Selecting a file allows the user to delete or save to it directly.
Clicking the ”+” button allows the user to create a new file in the selected
folder.

• By URI

Figure 5.16: By URI

Figure 5.16 allows the user to specify the full URI path where the project file
should be saved. The authenticated user has to be granted write permission
to be able to save to this location.

57

Edit original file

Figure 5.17: Properties

If the user has write access to the project loaded from a remote location, they
are asked to pick one of the following options:

• Edit original file
Saving the changes directly modifies the original file at its location.

• Save
Opens a dialog, allowing the user to save the file to a new location.

• Do not save
Closes the prompt, letting the user pick a location of their choice later on.

Project properties

Figure 5.18: Properties

58

Figure 5.18 allows the user to change the properties of the project. Fields in this
menu correspond to the same fields as in Figure 5.13 with extra items as follows:

• Property languages
Languages that should appear in the resulting query for data properties sup-
porting di�erent languages. Will return every available language if nothing
is specified.

• Custom prefixes
Allows the users to rename the prefixes found in the application.
Figure 5.18 represents an example where every ”nobel” prefix would be re-
named to ”custom”, e.g. ”nobel:laureate” would become ”custom:laureate”.
� allows the users to delete their custom property entry.

Warnings

Figure 5.19: Cartesian product warning

This warning is displayed when the user queries for data in the graph that does not
represent a strongly connected component and could therefore result in querying
for a cartesian product.

Figure 5.20: Customized query warning

This warning is shown if the SPARQL query has been manually edited. By
changing anything regarding the selection, the user e�ectively removes these edits.

5.1.3 Graph interface
This subsection describes the graph part of the application and how users can
interact with it. First the graph as a whole is described with its controls and
controls for node separately following.

59

Graph component

Figure 5.21: Graph area

Figure 5.21 shows the data schema as a graph where nodes represent entities and
edges represent the relationships between them. The users are able to interact
with the graph in the following ways:

• Node drag
Users are able to position the nodes in the graph by dragging them. This
change in position is saved to the project model file and is persistent, loading
the project again will result in the same positioning of the nodes.

• Empty space drag
Users are able to navigate around the graph by dragging an empty space
on it.

• Zoom
Utilizing the mouse wheel/scroll controls, users are able to control the zoom
level of the graph.

• Hover
Hovering over an edge highlights its source and target nodes. Hovering over
a node highlights all nodes connected to it with an edge and the correspond-
ing edges.

60

Figure 5.22: Graph node

Figure 5.22 represents a single entity from the data schema. Its controls are
as follows:

• Highlight
If some properties of the entity are selected, the entity is highlighted to
easily distinguish it from other entities in the graph that are not being
queried.

• � Delete entity
Remove the entity and its corresponding relationships from the schema
altogether. Curators can use this feature to split up large data schemas
into smaller, more specific chunks.

• � Copy entity
Creates a new instance of the same entity in the schema. This way users are
able to query for the same entity types with di�erent entity instances. In
the nobel prize example provided users might want to query two di�erent
sets of countries, one for the people and one for their respective universities.
Using only a single entity would not be able to achieve that in this case.

• ”?Name”
Name of the entity in the resulting data set. Can be changed in the list
controls described in the next section.

• � Hide
Hides the entity from the schema.

• + Select all
Selects all properties of the given entity.

• prefix:Name
Entity type.

• �� Expand/Collapse
Expands/collapses the container of the properties, displaying all data and
object properties available on the entity. Collapsing the container keeps the
selected properties visible.

61

• Property container
List of properties for the given entity. This list contains both data properties
and object properties. Selecting a property highlights both the node and
the property itself.

Figure 5.23: Edge

As shown in Figure 5.23, edges in the graph represent relationships between
entities in the data schema. If there exists an edge between two entities, there
exists at least on property on one of the entities that has the other entity as a
subject. The edge controls are as follows:

• Highlight
Hovering over an edge highlights it and also its corresponding nodes. High-
lighting a node from Figure 5.22 also highlights its all corresponding edges
and their end nodes.

• Click
Clicking an edge opens a menu with a list of properties the edge represents.
Users are able to perform all actions on these properties the same way as
they would via the list view.

Edges can also appear with di�erent styles based on the user’s interaction
with them:

62

Figure 5.24: Edge states

• Default grey color
None of the properties represented by the edge are selected.

• Blue color
Some properties represented by the edge are selected.

• Green color
The edge has been selected by clicking on it and its description menu is
being shown. The user can deselect the edge by clicking anywhere else in
the graph.

• Dash pattern
All of the edge’s selected properties are marked as optional.

Figure 5.25: Graph toolbar

Figure 5.25 represents a toolbar with access to action shortcuts for the user’s
convenience as follows:

• � Show all
Toggles all entities as shown that were previously hidden via Figure 5.22
�.

• � Hide rest
Toggles all entities that are not selected as hidden, functionally the same
as toggling entity as hidden directly in the graph via Figure 5.22 �.

• Fit into view
Fits the whole graph in to the current graph container, allowing the users
to view all entities in the window at once.

63

• � Deselect all
Deselect all currently selected properties and entities.

• � Run Query
Opens SPARQL Query editor and runs the query representing user’s selec-
tion.

5.1.4 List view
Similarly to the graph interface, the user can use the list view to achieve the
same results. This subsection describes the elements of the list view and how to
interact with them.

List overview

Figure 5.26: List overview

The list displays all the entities to be found in the data schema with controls that
enable similar interaction to the ones described in subsection 5.1.3.

Starting from the top:

64

List view controls

• Available tab
This tab displays all available entities in the data schema. If the user deletes
an entity from the project, this list is updated accordingly and the entity
is removed from it.

• Selected Tab
This tab displays only entities that themselves, or their properties, are
requested in the result set by the user.

Figure 5.27: Selected tab

The user is able to change the order of the requested resources in the top
part by dragging the entries to the desired position, resulting in di�erent
order of the queried variables.

Figure 5.28: Column order example 1

Figure 5.29: Column order example 2

65

• Search bar
This bar allows the user to filter out results by text search with immediate
response. The search is run on the labels, descriptions and the actual IRI
representation.

Figure 5.30: Search functionality

Entity rows

Each entity is represented by its own row entry in the list view.

Figure 5.31: Entity row

Every such row can be interacted with in the following ways:

• � Expand/Collapse icon
Clicking this icon allows the user to expand/collapse the properties linked
to this entity.

66

Figure 5.32: Expanded properties

• Title hover
Hovering over an entity name displays its full IRI as a tooltip.

Figure 5.33: Entity title hover

• � hover
Hovering over the � icon displays human readable description of the entity
if available (has to be supported by the endpoint set in the project).

Figure 5.34: Entity description

Entity row controls

On the right side, every entity row includes also quick actions similar to the
actions in described Figure 5.1.3

67

Figure 5.35: Entity description

• ? - Variable name
Variable name to be used in the result set of the SPARQL query as per
example:

Figure 5.36: Variable name field

Figure 5.37: Renamed variable result

Right side of the entity row o�ers quick actions as follows:

Figure 5.38: Entity row actions

• � - Select entity
Queries the entity under given variable name.

68

• � - Copy entity
Creates another instance of the same entity, same behaviour as in Fig-
ure 5.1.3.

• � - Delete entity
Deletes the entity instance from the data schema, same behaviour as in
Figure 5.1.3.

• � - Hide entity
Hides the entity in the data schema, same behaviour as in Figure 5.1.3.

Property row

Property rows are divided into data properties and object properties (tar-
geting other entities in the graph, resulting in a graph edge) with the property’s
target being specified at the end of the row. Every property has its own row in
the list view as follows:

Figure 5.39: Data property row

Figure 5.40: Object property row

The control elements are as follows:

• � - Select property
Selects the property under given variable name.

• � or � - Property type
An icon representing the type of the property, data or object.

• ”XXX � ? or grey field”
XXX represents the property’s predicate.
? denotes variable name field, same as for entity rows.
Greyed out field is present on object properties, informing the user that
the name of the target entity has to changed in order to change the name
of this property as per the tooltip:

69

Figure 5.41: Object property variable field tooltip

The user has to rename the entity directly if they wish to query the property
under a di�erent name:

Figure 5.42: Object property target

• � - Hide property from the result set
Hides the property from the result set. Useful when user wants to query
only entities with an existing relation but does not care about the property
value, e.g. user wants to query theses that have already been submitted
(have property ”submitDate”) but does not care about the actual date
itself.

• � - Mark property as optional
Marks property as optional.

5.1.5 Examples
The following subsection outlines example scenarios which can be followed to
introduce the user to the features of the application.

Every example is started from the new start of the application with default
settings. The reader is welcome to use the accompanying deployment of this
work on GitHub6 by clicking Demo7.

Nobel prize categories - graph

The first example is based on a data schema of Nobel prizes. This data schema
represents the information about Nobel prizes and their laureates. Let’s illustrate
a simple example where we would like to know what Nobel prize categories there
are.

First we have to load the data schema in the application, we can do that
either by accessing the demo application8 with the data already encoded at or by
following the steps below:

1. Click File æ New

6https://jaresan.github.io/simplod/
7https://jaresan.github.io/simplod/build/index.html
8https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.

github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/
sparql

70

https://jaresan.github.io/simplod/
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql

2. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/example.ttl

Endpoint: https://data.nobelprize.org/store/sparql

3. Click Create

Figure 5.43: Nobel prize example default view

When we open the application (depicted in Figure 5.43) we can notice the
”NobelPrize” entity in the graph.

Figure 5.44: NobelPrize entity

Clicking on the entity, we can expand its properties and see what it is linked
to. Let’s go ahead and select the nobel:category property.

71

https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql

Figure 5.45: Selected property

For a more detailed overview of what we have selected, we can take a look at
the list view under the graph, or next to it, in the tab selected.

Figure 5.46: List view

Here we can see we have selected the category property, named Nobel-
Prize category. Also the entity itself is selected (checkbox next to Nobel-
Prize), which will select the prizes as well. For the sake of the example, let’s
leave the selection as is. Clicking the ”Run SPARQL Query” at the top of the
screen, the editor opens and we can see the fetched results:

Figure 5.47: Run Query

72

Figure 5.48: SPARQL Results

In Figure 5.48 we can see the result created by our selection. First we have
the NobelPrize which represents the IRI of a Nobel Prize. Second we have
the NobelPrize category property, which is the textual representation of the
category for the given prize.

Considering we wanted to find only what categories Nobel prizes are awarded
in, this result is superfluous. To get rid of the prizes, we can go back to the list
view to deselect them:

Figure 5.49: List view

Deselecting the entity will remove its IRI from the results set. Executing the
query again, we get the following:

73

Figure 5.50: Cleaner results

In Figure 5.50 we can see that we have now only fetched the categories. Any-
body shown these results can immediately understand what they represent.

Now that we’ve fetched the data, we might want to share them. We can do
so by downloading the result directly in the CSV format and sharing that file:

Figure 5.51: Download CSV

We can also share the data by sharing a link to a third party tool populated
with our query. To do that, we can open the share menu via the ”Share” button
at the top of the screen. By clicking on the � icon for YASGUI Query Tool,

74

we copy the URL with the query encoded into our clipboard and can then just
paste it in the browser and view the result. We can also click the � icon to launch
the tool directly.

Figure 5.52: Copy yasgui query URL

75

Figure 5.53: Yasgui query results

We can also use ”Direct access URL” which returns the results directly, or
get the cURL POST request to use in the terminal. All of the share options are
described in Figure 5.1.2.

Nobel prize categories - list view

What if we don’t want to navigate through the graph because it might seem too
clunky?

We can use the search functionality in the list view. We are looking for Nobel
prizes. By typing ”prize” in the search field, we can see entity rows being filtered
out based on their matching text.

Figure 5.54: List view

76

In this case, we can select the property directly by checking the box on its
left side. The rest of the steps is the same as the end for the graph variant.
The graph and list are connected and new changes are reflected in both of these
components.

Nobel prize laureates

Continuing with the example of nobel prizes, let’s try an example where we’d like
to get nobel laureates with some additional info about them. Let’s begin with
the default view by following the same steps as previously, either accessing the
example directly9 or by following the steps below:

1. Click File æ New

2. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/example.ttl

Endpoint: https://data.nobelprize.org/store/sparql

3. Click Create

Figure 5.55: Nobel prize example default view

9https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.
github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/
sparql

77

https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql

Since we are interested in nobel prize laureates, we can click the Laureate
entity to see what relationships there are:

Figure 5.56: Laureate entity properties

Let’s say we are interested in the laureate’s birth country, their name and ad-
ditional information about the prize they received. If we take a look at the prop-
erties, the corresponding ones would be dbpo:birthPlace (dbpo:Country),
foaf:name and nobel:nobelPrize (nobel:NobelPrize) respectively. The se-
lection would look as follows:

Figure 5.57: Laureate properties of interest

We can notice that the entities for nobel:NobelPrize, dbpo:Country are
highlighted as well, this is because we have selected the properties targeting them.
Let’s say for the dbpo:Country we are interested in its label rdfs:label. For
nobel:NobelPrize, we would like to know for which nobel:category it was
awarded. After selecting all of this information, the resulting selection would
look as follows in the graph:

78

Figure 5.58: All properties of interest

We can clean up the graph by removing data we aren’t interested in. We can
do this by pressing the � icon in the top right of the graph, which will in turn
hide all the data that is not requested.

We can also manually delete every single entity via the � icon, this in turn
would make it impossible to get the entities back for this project (as opposed to
� which just hides the entities, they can be made visible afterwards).

After hiding the data, let’s arrange the nodes better by moving them around.
After cleaning the graph up a bit, we get something that could look as follows:

Figure 5.59: Cleaned up selection

This is already a valid selection. Using the graph quick action toolbar in the
top right, we can hit the � button and execute the query for the following results
(the order might di�er based on the specific order of selecting the properties):

Figure 5.60: Execute query button

79

Figure 5.61: Results

You might notice that some of the rows repeat themselves. This is due to
the Country label having entries in multiple languages. If the data is set up
properly, properties utilizing multiple languages are of type rdfs:langString. To
query only for English variants of the country labels, we can change the project
properties:

Figure 5.62: Results

80

Figure 5.63: Results

Doing this ensures that all of the selected properties will be queried in their
English variant if their type is rdfs:langString. You can set multiple languages
this way, the result set will then contain all of them. With the properties set to
query for English only, the results look as follows:

Figure 5.64: Results

While this query is valid, a person interested in this information might not
want the IRIs to be present in the result set, the textual representation provided
via labels might be su�cient. To get rid of the IRIs in the result set, we have to
deselect the entities via the list view as follows:

Figure 5.65: Selected entities

81

Figure 5.66: Deselected entities

This e�ectively removes the IRIs from the query and displays only the queried
properties (in this case the labels we selected). The result is more concise and
shorter:

Figure 5.67: Result set without IRIs

Nobel prize laureates - part 2

We have retrieved information about Nobel prize laureates and about the awards
they received. Let’s extend the search by querying for the places where the
laureates passed away.

Checking Figure 5.56, we can see there are two properties of interest, namely
deathPlace (dbpo:Country) and dateOfDeath. Let’s query for deathPlace
(dbpo:Country) then. Understandably this will result in a data set of only
deceased laureates, since laureates with no such property will be omitted from
the result set, as the property is marked as required, not optional. Marking the
property as optional would allow to search for both living and deceased laureates
with place of death filled in where applicable.

Updated selection and the results with death place under Country label
would look as follows:

Figure 5.68: Selection with place of death

82

Figure 5.69: Results with place of death

You might notice the new result didn’t change from Figure 5.67. This is
because we are querying for a single country. Our query actually translates
to find laureates who were born and died in the same country due to
the links/edges being pointed to the same Country entity. While this is not an
invalid query and can have its uses, it is not what we are looking for. This is
where we need to use the � icon on the Country node in the graph (or use the
same on in the list view) and create a separate entity instance for Country to
introduce a distinction between the death place and birth place.

Clicking the � icon on the Country entity, we get the following:

Figure 5.70: Selection with cloned Country entity

By copying the node, the Laureate entity has new properties added that
target the new Country entity:

83

Figure 5.71: Newly listed properties

Next we just have to remove the old deathPlace and use the new one:

Figure 5.72: Proper selection

We again pick label on the newly copied Country 1 and remove the IRI
specification by deselecting the checkbox in the list view for Country 1. Exe-
cuting the query via � now yields results even if the laureate wasn’t born and
died in the same country:

Figure 5.73: Proper death place results

84

If we were looking for all laureates (living and dead) and just adding the
information of their death place if it exists, we could mark the deathPlace
property as optional via the list view or clicking the edge:

Figure 5.74: Death place optional

Which in turn returns all laureates, living and dead, with the country of their
death if it’s specified:

Figure 5.75: Results with death place optional

Another nice example would be to query only for living laureates. However,
such an example would require the ability to constrain the values of properties,
which is not a feature implemented in the graph tool. However, users can also
directly edit the SPARQL query, should they want to tweak it.

German books - Save & Load example

Let us finish with an example that will show the loading and saving capabilities
of the application. This example is based on B3Kat cataloguing platform10 which
we will use to fetch data about books and their relevant information.

Unlike in the previous examples, here we will be starting from an already
curated example project file. Files like these can be created by appointed users
to separate bigger data sets into smaller, better manageable chunks. The data
schema used in this example has been curated directly via the application from
a ttl file available at GitHub11.

10https://www.kobv.de/services/katalog/b3kat/
11https://raw.githubusercontent.com/jaresan/simplod/master/public/german_

books.ttl

85

https://www.kobv.de/services/katalog/b3kat/
https://raw.githubusercontent.com/jaresan/simplod/master/public/german_books.ttl
https://raw.githubusercontent.com/jaresan/simplod/master/public/german_books.ttl

We will also be utilizing a Solid pod for data persistence. Before proceeding
further, it is important we follow the steps outlined in subsection 5.1.1 and have
the Solid pod set up with the necessary application permissions up correctly.

Let’s open the application Demo - https://jaresan.github.io/simplod/
build/index.html.

To start with the example, we will first load the appropriate project file by
navigating to File æ Load æ By URI.

In the input field we put https://jaresan.github.io/simplod/examples/
german_books.json and press Load.

Figure 5.76: Load by URI

Upon loading the project file, we can see the default view for the curated book
data set:

Figure 5.77: Graph loaded

By clicking on the edges between the nodes, we can inspect the relationships
they represent:

86

https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/examples/german_books.json
https://jaresan.github.io/simplod/examples/german_books.json

Figure 5.78: Edge descriptions

By inspecting all three edges presented, we will get the following information
for the existing relations in the data schema:

Figure 5.79: Edge descriptions

From this, we can gather that a book can have an exemplar item which in
turn is owned by an organization. A book can also be a part of a series.

Let’s find books with their respective series, should they be a part of one.
If we are looking for books, we might also be interested where we could borrow
them from. We are then going to query their respective exemplar Items, and for
the items, we will select the Organizations that represent the owner.

As usual, we want to get the labels or titles for each item. Organizations
in this case also contain the property homepage which could be useful as a
reference to the owner as well. With all of this data in mind, the selection would
look as follows:

• Book
bibo:isbn - ISBN of the book
dce:title - Title of the book
dcterms:partOf, Optional - Book series
frbrcore:exemplar - Exemplar of the book

87

• Series
bibo:shortTitle - Title of the series

• Item
frbrcore:owner - Organizational owner of the exemplar

• Organization
foaf:homepage - Homepage of the organization
foaf:name - Name of the organization

Figure 5.80: Graph selection

Notice the dashed edge, this means the relationship between book and its
series is optional, meaning we will query for all books and return their respective
series, if existing. Not marking this edge as optional, we would only query for
books that exist in a series. In the list selection, we can deselect the entities
themselves to omit the IRIs from displaying in the result set:

Figure 5.81: List selection

88

We can run the query via the � icon. For the demonstration purposes of this
example, it would be a good idea to limit the maximum number of results we can
retrieve to 100. The data set provided by B3Kat spans over 25 million titles and
querying across them all might take a significant amount of time.

Figure 5.82: Query limit

After changing the limit and running the query again by pressing the �, we
can get the following results:

Figure 5.83: Results

What if we want to save this result to our Solid pod? We just go to File æ
Save. If we are logged in, we already see our Solid pod files. If we are not logged
in, we can log in either directly through the button in this menu, or through the
top right avatar menu.

Figure 5.84: Save menu

89

After successfully logging in, we can see our the list of our Solid pod files. We
can list through the folders and in each one click the + icon to save the file in
that location. Let’s go with the root folder and click the + icon.

Figure 5.85: Solid pod files

After clicking the + icon, we just have to pick a file name. Let’s type in
german books and click on save or hit enter.

Figure 5.86: New filename

If the file got saved correctly, we are greeted with a notification confirming
the new save location:

Figure 5.87: File saved notification

We can also see the new file location in the status bar. Hitting ctrl+s now
saves the changes to the new remote location.

Figure 5.88: Status bar after remote save

90

Finally, we might want to share this project file among other users. To do
that, first we need to set its permission appropriately from the Share menu in
the top-right.

Figure 5.89: Permission drop-down

From the drop-down list, we can select Public/read, so that every user will
be able to read this project file, but only we, as the owner, will be able to edit it.

Figure 5.90: Permission drop-down

If everything goes correctly, the action is confirmed by a notification and we
can proceed to copy the file URL via the � icon and share it among other users.

91

Figure 5.91: Permissions changed successfully

The copied URL (in this case https://jaresan.inrupt.net/german_books.
json) leads directly to the model file in our Solid pod. Same way as in the first
step of this example this URL can be directly loaded in the application by File

æ Load æ By URI.

5.2 Administrator documentation
In the first part this section describes the steps to take to deploy the application.
The second part focuses on providing the application with initialization inputs to
change what data the application displays when the users enter from a specific
source.

5.2.1 Prerequisites
The minimum required configuration to be able to follow the deployment and
development steps are:

1. NodeJS12

Version Ø 10.0.

2. Npm13.
This documentation is written for npm, but other package managers, e.g.
yarn14 can be used as well.

12https://nodejs.org/en/
13https://www.npmjs.com/
14https://yarnpkg.com/

92

https://jaresan.inrupt.net/german_books.json
https://jaresan.inrupt.net/german_books.json
https://nodejs.org/en/
https://www.npmjs.com/
https://yarnpkg.com/

5.2.2 Data schema creation
As mentioned in section 2.5, one of the required inputs for the application is
a data schema. One of the ways to create such a schema is by providing an
endpoint containing the data to a LinkedPipes ETL Kĺımek and Škoda [2017]
pipeline created by the supervisor of this thesis.

This subsection describes how to create a data schema from an endpoint
utilizing the demo instance15 and the pipeline specification16.

Preparing the endpoint specification

Before running the pipeline, we have to create an input file specifying the end-
points we would like the pipeline to use. For this purpose we can edit the template
file on GitHub17 with our own endpoint by replacing http://vocabularies.
unesco.org/sparql with the URL of the SPARQL endpoint of our choosing.

We can also provide more endpoints at once, as shown in a template file on
GitHub18. However, in such a case case, the pipeline would aggregate all the
results into one .ttl file, which might not be desirable. To prevent this, we can
always update the single endpoint file and run the pipeline again.

We then make the file remotely accessible and in the steps outlined below can
provide the URL to the pipeline. For the sake of this example, let’s consider the
file hosted on GitHub19.

Running the pipeline

To run the pipeline with our endpoint specification, we can follow these steps:

1. Access https://demo.etl.linkedpipes.com/#/pipelines and click on
the upload button:

Figure 5.92: Upload button

15https://demo.etl.linkedpipes.com/#/pipelines
16https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_

schema_pipeline.jsonld
17https://github.com/jaresan/lod-cloud/blob/master/endpoint.ttl
18https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.

ttl
19https://raw.githubusercontent.com/jaresan/lod-cloud/master/endpoint.ttl

93

http://vocabularies.unesco.org/sparql
http://vocabularies.unesco.org/sparql
https://demo.etl.linkedpipes.com/%23/pipelines
https://demo.etl.linkedpipes.com/%23/pipelines
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://github.com/jaresan/lod-cloud/blob/master/endpoint.ttl
https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.ttl
https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.ttl
https://raw.githubusercontent.com/jaresan/lod-cloud/master/endpoint.ttl

2. Provide the .jsonld file specification20 and click ”Upload”:

Figure 5.93: Upload detail

3. The graphical representation of the pipeline is shown on successful upload.
If the graph is not in edit mode, click on the ”edit mode” button in the
bottom right:

Figure 5.94: Pipeline graph

4. Double click on the first node in the graph marked as ”HTTP get” to enter
its edit mode:

Figure 5.95: Pipeline start node

5. Change the File URL to point to your .ttl file with the endpoint specifi-
cation. The filename is not important for our use case, but make sure to
specify .ttl as su�x:

20https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_
schema_pipeline.jsonld

94

https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld

Figure 5.96: Start node options

6. After the data is properly changed, click on the ”execute” button at the
bottom of the graph:

Figure 5.97: Execute button

7. Wait for the execution of the pipeline to finish. The success of the run is
symbolized by the status bar or by the final node’s edge being green:

Figure 5.98: Execute button

8. The process can also fail for various reasons, this fact is similarly by an icon
and by the edge of the failing node being red. This work does not cover
troubleshooting for failing pipeline executions.

95

Figure 5.99: Execute button

9. Click on the output (yellow) socket on the last node of the graph:

Figure 5.100: Results location

10. Click on the download icon to get an archive with the results:

Figure 5.101: Download results

The resulting .ttl can then be directly loaded in the application. The .ttl file
generated by this example can be found on GitHub21.

5.2.3 SPARQL proxy
As described in section 4.3, the application might also require a proxy to be used
in the case of failing requests due to various reasons, mainly due to CORS and
Same-Origin policy issues. To prevent this, this work is also submitted with an
Express22 application, that can be hosted and used as the proxy.

• Clone the repository
Clone the repository at https://github.com/jaresan/sparql-proxy/.

21https://github.com/jaresan/lod-cloud/blob/master/unesco.ttl
22https://expressjs.com/

96

https://github.com/jaresan/sparql-proxy/
https://github.com/jaresan/lod-cloud/blob/master/unesco.ttl
https://expressjs.com/

• Deploy the proxy Express application
Follow basic deployment steps.
The steps to deploy an Express application are not a part of this work since
there are various hosting services with their specific guides each.

• Change the application proxy path
To use the proxy, you have to change src/@@constants/api.js:

const root = ’YOUR_PROXY_PATH_HERE’;
const useProxy = true;

This application is submitted using a proxy running at https://simplod.
herokuapp.com/.

Not using a proxy can result in failing to fetch human readable labels for
the entities in the list view and potentially failing query execution due to the
endpoint not being set up correctly.

5.2.4 Deployment
There are only few steps the administrator has to take to deploy the application.
The steps are written utilizing npm23, but the same pattern can be followed when
using other package managers:

Direct build download

For convenience, the build files24 are committed as well in the repository. The
deployment steps in that case are as follows:

1. Download the repository25 as zip

Figure 5.102: Download as zip

2. Upload the build file to your hosting and specify index.html as the entry-
point

23https://www.npmjs.com/
24https://github.com/jaresan/simplod/tree/master/build
25https://github.com/jaresan/simplod/

97

https://simplod.herokuapp.com/
https://simplod.herokuapp.com/
https://www.npmjs.com/
https://github.com/jaresan/simplod/tree/master/build
https://github.com/jaresan/simplod/

Project deployment

Since this application has been developed with Creact React App26, the adminis-
trators can also follow the steps outlined on the React deployment page27 directly,
hosting via npm start.

1. Clone the repository
First, clone the repository at https://github.com/jaresan/simplod.

2. Install the dependencies
From inside the repository, run npm install.

3. Build the repository
Build the production version of the repository by running npm run build
inside the repository.

4. Publish build and expose build/index.html

Upload the build directory to a hosting service and make index.html acces-
sible.

This work also includes a heroku28 postbuild hook29, meaning all new pushed
changes to heroku are automatically built.

In conclusion, as terminal commands, the steps could be summed up as fol-
lows:

... cd to the location you want to save this project

git clone https://github.com/jaresan/simplod your_project_name
cd your_project_name
npm install
npm run build

upload ./build to a hosting site and make index.html accessible

5.2.5 Application parameters
When deployed, the administrator is able to change the data with which the appli-
cation opens by utilizing one of the three available parameters in the application
URL.

• schemaURL=

URL of the data schema to load. For example:
https://jaresan.github.io/simplod/example.ttl

26https://github.com/facebook/create-react-app
27https://create-react-app.dev/docs/deployment/
28https://www.heroku.com/
29https://devcenter.heroku.com/articles/nodejs-support#

customizing-the-build-process

98

https://github.com/jaresan/simplod
https://jaresan.github.io/simplod/example.ttl
https://github.com/facebook/create-react-app
https://create-react-app.dev/docs/deployment/
https://www.heroku.com/
https://devcenter.heroku.com/articles/nodejs-support%23customizing-the-build-process
https://devcenter.heroku.com/articles/nodejs-support%23customizing-the-build-process

• endpointURL=

SPARQL endpoint to be set in the application.
For example https://data.nobelprize.org/store/sparql.

• modelURL=

URL of a project file to load, acting in the same way as File æ Load æ By

URI. This option overrides both schemaURL= and endpointURL=

For example: https://jaresan.inrupt.net/german_books.json

Example usage:

• index.html path
https://jaresan.github.io/simplod/build/index.html

• Data schema
https://jaresan.github.io/simplod/example.ttl

• Endpoint
https://data.nobelprize.org/store/sparql

• Project
https://jaresan.inrupt.net/german_books.json

The link pointing to the application would have these two added as URL
params30 named schemaURL and endpointURL.

With the parameters set up, we get a link31 pointing to the instantiated ap-
plication with the data schema and endpoint, or a link32 to the application with
project file to be loaded.

5.3 Programmer documentation
This section gives a basic overview of the application for the developers. The first
part describes how to set up the development environment locally, following with
a brief description of the code structure and examples of new features and how to
implement them. Lastly, automatically generated documentation from the code
is mentioned.

30https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
31https://jaresan.github.io/simplod/build/index.html?schemaURL=https:

//jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.
org/store/sparql

32https://jaresan.github.io/simplod/build/index.html?modelURL=https:
//jaresan.inrupt.net/german_books.json

99

https://data.nobelprize.org/store/sparql
https://jaresan.inrupt.net/german_books.json
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql
https://jaresan.inrupt.net/german_books.json
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?modelURL=https://jaresan.inrupt.net/german_books.json
https://jaresan.github.io/simplod/build/index.html?modelURL=https://jaresan.inrupt.net/german_books.json

5.3.1 Prerequisites
The minimum required configuration for developing the application:

1. NodeJS33

Version Ø 10.0.

2. Npm34.
This documentation is written for npm, but other package managers, e.g.
yarn35 can be used as well.

5.3.2 Local development setup
• Clone the repository

First, clone the repository at https://github.com/jaresan/simplod.

• Install the dependencies
From inside the repository, run npm install.

• Run local environment
From inside the repository, run npm run start:dev. After running the
command, the application will be available on http://localhost:3000. If
you want to run a version with SSL on, you can use
npm run start:dev:https.
Run this way, the server listens to changes to the codebase, and reloads the
application if any are detected.

• OPTIONAL - Add localhost to your trusted apps
If you wish to use a Solid Pod while running the application locally, you
have to add the hosting address to your Solid Pod. This can be done
automatically through signing to the Solid Pod in the upper right corner,
or by following the steps mentions in Appendix A

• OPTIONAL - Link SPARQL Proxy
Add SPARQL Proxy based on subsection 5.2.3.
This work is submitted with a proxy avaiable on Heroku36.

5.3.3 Overview
This subsection provides an overview of the application state and code structure.

33https://nodejs.org/en/
34https://www.npmjs.com/
35https://yarnpkg.com/
36https://simplod.herokuapp.com

100

https://github.com/jaresan/simplod
http://localhost:3000
https://nodejs.org/en/
https://www.npmjs.com/
https://yarnpkg.com/
https://simplod.herokuapp.com

Redux state

As mentioned in section 3.4, Redux is used for handling the application state.
The whole state is split up into 5 separate sub-states as follows:

{
"solid": {},
"model": {},
"settings": {},
"controls": {},
"yasgui": {}

}

• solid
Represents the authentication state. Contains user’s information and their
session.

• model
Represents all of the data in the application that can be exported. When a
user saves/downloads the project file, the file they create is a direct copy
of this sub-state. Importing a file directly replaces this sub-state.

• settings
User’s specific settings, e.g. language, view layout.

• controls
Contains arbitrary information used to help render components interac-
tively to the user. For example contains the currently selected edge, which
is used to highlight the edge and display the properties it represents.

• yasgui
YASGUI specific information. Contains the currently parsed query and the
YASGUI instance.

Detailed description of the state can be found on GitHub37.

Folder structure

The source files of the application are split into folders as follows:

• @@actions

More complex actions that can be triggered throughout the application and
can trigger state changes.

• @@app-state

State handling functionality for every sub-state of the application and the
definition of the main reducer and how changes propagate to the store.

37https://github.com/jaresan/simplod/tree/master/src/%40%40app-state

101

https://github.com/jaresan/simplod/tree/master/src/@@app-state

• @@components

All React components in the application split further into:

– controls
Helper interaction components, for example modals, confirm dialogs.

– entityList
List view, allowing the user to interact with the data set via a list
component instead of through the graph.

– menu
All menu components, e.g. the menu bar, save/load menu, share menu.

• @@constants

Declaration of the constants used throghout the application.

• @@data

Data handling, be it graph calculations, parsint .ttl files or the SPARQL
query itself.

• @@graph

All of the graph layer, as described in subsection 3.3.1, the graph library
used is AntV. The graph folder is split further into two more folders:

– wrappers
Classes wrapping the interaction with the actual graph elements and
reacting to it.

– handlers
Classes handling and triggering state changes, as opposed to wrappers,
these classes don’t react to user interactions directly.

• @@selectors

State selectors, used by the components to subscribe to specific subsets of
the application state.

More thorough description of all files with generated code documentation by
JsDoc38 can be found on GitHub39.

5.3.4 Implementation examples
This subsections describes an example of how to implement some features that
are not present in the application.

38https://jsdoc.app/
39https://jaresan.github.io/simplod/documentation

102

https://jsdoc.app/
https://jaresan.github.io/simplod/documentation

Hide rest æ Delete rest

As mentioned in subsection 5.1.3, the � ”Hide rest” hides all entities that are
not selected via any means. For this exmaple let’s change this to delete all such
entities instead of hiding them.

Checking the source code, we can find the button in the graph component
in @@components/GraphContainer.js. Following the functionality, we can see
that the main logic taking place is implemented in @@app-state/model/state’s
hideUnselected. To build it in a similar way, we could do the following:

export const deleteUnselected = s => {
const properties = pipe(

getProperties,
filter(prop(’selected’)),
values

)(s);
const toKeep = properties

.reduce((acc, p) => Object.assign(acc, {
[p.target]: true,
[p.source]: true

}), {});

const toDelete = keys(
filter(

c => !c.selected,
omit(keys(toKeep), view(classes, s))

));

return toDelete.reduce((acc, id) => deleteClass(id, acc), s);
}

If you test this out, you will see that while the entities disappeared from the
list view, they remained intact in the graph. This is because the graph items
have to be handled separately and deleted directly in the graph. Luckily there’s
already a static method onDeleteEntity in @@graph/Graph.js, which handles
both. This means we just have to find ids we would like to delete and pass them
to onDeleteEntity.

The simplest way would be to add a selector to @@selectors akin to the
following:

export const getIgnoredEntityIds = s => {
const properties = pipe(

getProperties,
filter(prop(’selected’)),
values

)(s);
const toKeep = properties

.reduce((acc, p) => Object.assign(acc, {
[p.target]: true,

103

[p.source]: true
}), {});

return keys(
filter(

c => !c.selected,
omit(keys(toKeep), getClasses(s))

)
);

};

This way, we get a function that return ids of entities that could potentially
be completely deleted. Now we just have to extract this information from the
state somewhere and add a control element to handle the graph method invoca-
tion. This can be simply added to @@components/GraphContainer.js. The full
implementation of this feature can be found in a pull request40 on GitHub.

Custom schema node layout

Another example that might be interesting to implement is implementing a new
node layout. Based on the AntV documentation41 we can see that nodes expose a
updatePosition method. To implement this then, we just need to add a method
to the graph handler and lay out the nodes based on predefined criteria. For the
sake of simplicity let’s go with a simple grid layout.

All graph functionality related to the canvas and its data is contained in
@@graph/Graph.js. We just need to implement a simple static method that
accesses the graph instance, gets its nodes and updates their positions. It could
look something like the following:

static gridLayout() {
const rowCount = 5;
const columnGap = 250;
const rowGap = 200;
const nodes = this.instance.getNodes();

let rowIndex = 0;
let columnIndex = 0;
nodes.forEach(n => {

n.updatePosition({
x: columnIndex * columnGap,
y: rowIndex * rowGap

})

n.getEdges().forEach(e => e.refresh());
// Edges need to be refreshed to properly link to the nodes,
// otherwise they stay in empty space

40https://github.com/jaresan/simplod/pull/28
41https://g6.antv.vision/en/docs/api/Items/itemMethods

104

https://github.com/jaresan/simplod/pull/28
https://g6.antv.vision/en/docs/api/Items/itemMethods

columnIndex++;
if (columnIndex === rowCount) {

columnIndex = 0;
rowIndex++;

}
});

}

The only thing left to do is to tie a call to this method through a control
element in the graph. Complete implementation of this feature can be found in
a pull request42 on GitHub.

5.3.5 Automatically generated documentation
This work also includes generated documentation from the JavaScript annotations
inside the codebase using JsDoc43.

The documentation is accessible directly on GitHub Pages44.

42https://github.com/jaresan/simplod/pull/29
43https://github.com/jsdoc/jsdoc
44https://jaresan.github.io/simplod/documentation

105

https://github.com/jaresan/simplod/pull/29
https://github.com/jsdoc/jsdoc
https://jaresan.github.io/simplod/documentation

A. Solid Pod troubleshooting
This chapter describes manual setup of Solid Pods in detail, should the steps
outlined in subsection 5.1.1 fail.

A.1 Logging in with Solid Pod
To set up all permissions for the application, the user has to sign in1 to their
Solid Pod first.

After signing in, the user can navigate in the application utilizing a tooltip
menu by hovering over their avatar in the top right corner.

In the following sections navigating to a certain part of the Solid Pod takes
this menu into account and references it.

Figure A.1: Solid Pod menu

A.2 Enabling trusted apps
To allow the application to manipulate data in the Solid Pod, it has to be added
to the Solid Pod’s trusted sources. The application can be marked as trusted by
following these steps:

• Go to ”Preferences” in the menu

• Go to ”Manage your trusted applications” section and add the URL where
the application is hosted, as a demo example https://jaresan.github.io
can be used as the application URL
Note: Make sure you omit the trailing slash, i.e. https://hosting.com,
not https://hosting.com/

• Check ”Read”, ”Write”, ”Append” privileges

• Click on ”Add”
1https://solid.community/login

128

https://jaresan.github.io
https://hosting.com
https://hosting.com/
https://solid.community/login

This allows the application to manipulate data in the user’s Solid Pod when
they are logged in via their Solid Pod providing entity.

Figure A.2: Trusted applications

A.3 Creating a save destination
To create a new folder where the application data could be stored, the user can
follow the steps below:

• Go to ”Your storage” in the menu

• Click the green plus button

• Select the folder icon and choose new folder name

• Click the green check button

• The newly created folder can be found at
https://USERNAME.solid.community/FOLDER_NAME

where USERNAME and FOLDER NAME represent the user’s Solid Pod
login and the folder name chosen in the previous steps respectively

129

Figure A.3: Creating a folder

130

	Introduction
	What is Linked Data?
	What is a Solid Pod?
	Goals
	Thesis structure

	Analysis
	Target audience
	User roles
	Requirements
	Functional requirements
	Non-functional requirements

	Use cases
	Administrator
	User

	Application inputs
	SPARQL endpoint
	Data schema

	Existing solutions
	Comparison criteria
	Solution comparison

	Design
	Type of application
	Web application advantages:
	Desktop application advantages:
	Conclusion

	Storage options
	Local file system
	Cloud solutions
	Solid Pods
	Chosen solution

	Language
	Libraries & Frameworks

	Application architecture
	View layer
	Application logic
	Persistent data handling, Solid Pods
	SPARQL Editor
	Overview

	Mockups
	Title page
	User information
	Data area
	Query editor

	Implementation
	Limited mobile experience
	State handling with Ramda
	SPARQL Proxy
	Interesting implementation tasks
	SPARQL generation
	Cartesian product detection
	Optionality cycles

	Room for improvement
	Graph tool
	Query improvements

	Documentation
	User documentation
	Solid Pod setup
	UI Elements
	Graph interface
	List view
	Examples

	Administrator documentation
	Prerequisites
	Data schema creation
	SPARQL proxy
	Deployment
	Application parameters

	Programmer documentation
	Prerequisites
	Local development setup
	Overview
	Implementation examples
	Automatically generated documentation

	Tests
	Unit testing
	Libraries
	Covered code

	Manual test scenarios
	Preliminaries
	T1 - Visualization and simple configuration
	T2 - Language selection
	T3 - Offline capabilities
	T4 - Data handling
	T5 - SPARQL Capabilities
	T6 - Graph interactions

	Evaluation
	Goal fulfillment
	System usability scale results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Solid Pod troubleshooting
	Logging in with Solid Pod
	Enabling trusted apps
	Creating a save destination

	Attachments

