5. Documentation

This chapter provides additional information about the application to users, ad-
ministrators and programmers who might look to improve the application or
would want to understand its inner workings better.

This chapter can also be found on GitHub]

5.1 User documentation

This section describes how the user can connect to the application, utilize their
Solid Pod and furthermore shows basic manipulation of the application data and
view creation.

The reader is encouraged to navigate through the user guideﬂ should they
have any problems following specific steps setting up the Solid environment.

5.1.1 Solid Pod setup

This subsection describes the requirements necessary to enable the application to
persist its data by utilizing the user’s Solid Pod. While the application can be used
without Solid Pods as illustrated in no data and view management
can be established, therefore severely limiting the functionality of the application.
The user is encouraged to read through the documentation and follow all the steps
outlined to familiarize themselves with the application and set up the environment

properly.

Preliminaries

The following sections are written for Solid Pods hosted at Inruptﬂ This applica-
tion shall be usable with any Solid Pod providing service but the details regarding
its use might differ.

We assume the reader has their own Solid Pod set up, if not, they are able to
create a new one for free on the registration pageﬂ

Logging in with Solid Pod

To set up all permissions for the application, the user has to sign in to their Solid
Pod first via the application’s avatar button in the top right corner.

Figure 5.1: Avatar menu

) Run SPARQL Query

Login

'https://jaresan.github.io/simplod/documentation.pdf
Zhttps://github.com/solid/userguide
3https://inrupt.net/

4https://inrupt.net/register

48

https://jaresan.github.io/simplod/documentation.pdf
https://github.com/solid/userguide
https://inrupt.net/
https://inrupt.net/register

Upon clicking on the login button, the user is required to choose their Solid
Pod provider either from the list provided or by specifying it themselves.

Figure 5.2: Picking Solid Pod provider

Log in to jaresan.github.io

Please enter your WeblD or the URL of your identity provider:

[https://my-identity.provider | @

Or pick an identity provider from the list below:

e

After the provider is chosen, the user is able to authenticate via the provider’s

login screen.

Figure 5.3: Provider login screen
Login

Username Username

Password Password

New to Solid? Create an account

When the login is successful, the user is requested to grant permission to the
application which would allow it to save and handle its data across the user’s

Solid Pod.
Figure 5.4: App permission prompt

Authorize https://jaresan.github.io/simplod/ to access your Pod?

Solid allows you to precisely choose what other people and apps can read and write in a Pod. This version of the authorization user interface (node-solid-server V5.1) only supports
the toggle of global access permissions to all of the data in your Pod.

If you don’t want to set these permissions at a global level, uncheck all of the boxes below, then click authorize. This will add the application origin to your authorization list,
without granting it permission to any of your data yet. You will then need to manage those permissions yourself by setting them explicitly in the places you want this application to

access.

By clicking Authorize, any app from http://localhost:3000 will be able to:

Read all documents in the Pod

Add data to existing documents, and create new documents

Modify and delete data in existing documents, and delete documents

[Give other people and apps access to the Pod, or revoke their (and your) access

Authorize Cancel

This server (node-solid-server V5.1) only implements a limited subset of OpeniD Connect, and doesn't yet support token issuance for applications. OIDC Token Issuance and fine-
grained management through this authorization user interface is in the backlog for node-solid-server

49

If all of the above steps resolve correctly, the user is shown a positive feedback
message and able to start working with the application fully.

With all of the steps outlined above complete, the application shall have all
the permissions it needs to properly manage its data utilizing the user’s Solid
Pod.

Should the reader experience problems with the application data management,
they are encouraged to resolve the problems manually directly in their Solid Pod,

as outlined in

5.1.2 UI Elements

This subsection describes the layout of the application with a detailed explanation
of each interactive element available to the user.

Layout
Figure 5.5: Layout
Project name Changes not saved _
[Run SPARQL Query - Share
File Settings
Available Selected
?AwardFile
nobel:AwardFile Q
?FileType)
PObSLFIBTIRg > récompense 2 Award goe
[@[&[?Category > ville 2 City goe
nobel:Category
> pars 2 counry doe
R+ | nobel:LaureateAward | v
[@[B[?PrizeFile > université 2 University gge
dbpo:Award nobel:PrizeFile
> Organization 2 Organization gge
foaf:Organization N P 2 Person Jgoge
> Award File ® 2 AwardFile gge
[@[B[?University|
dbpo:University > Nobel Prize category @ 2 Category gge
?NobelPrize)
> File Type 2 FileT,
nobel:NobelPrize V] feTyee @ e Jgoe
[@[S[?Laureate | > Laureate @ 2 Laureate goe
[+ | dbpo:City | A > Laureate Award © 2 LaureateAward gge
o;'ll:?aéneAi:f rdf:Literal -/;> gsam(
rdfs:label: rdf:Literal --> ?label
> Nobel Prize @ 2 NobelPrize goge
dbpo:Country > Prize File © 2 PrizeFile goe
[@[@[?Class
rdfs:Class [V | > Class © 2 Class goe

Figure 5.5 displays the overview "main screen” of the application. It is split
into three main parts:

e Top bar

Contains user information with project save status and functionality regard-
ing application settings and file handling. Right part contains additional
controls for the user, such as authentication and file sharing.

e Left part - Graph

Contains the graphical representation of the open data schema. Users are
able to view different entities and their properties and the relations between

50

them. Upper-right part of the graph also contains shortcuts to certain func-
tionalities like showing all entities, clearing selection, and others. Described

in lsubsection 5.1.3l

e Right part - Entity list

A list view of the data displayed in the graph with additional controls.
Contains a search bar to allow users to quickly filter out entities by their

name. Described in [subsection 5.1.4].

Project bar

Figure 5.6: Project status

Project title CJ changes saved
Project title Changes not saved

Project title ¢ File saved at https://jaresan.inrupt.net/test.json

Project title Latest changes not saved to https://jaresan.inrupt.net/test.json

Figure 5.6| contains the following:

e Project title

Title of the project. Allows the user to edit by directly clicking in the text
field.

e Change status

Displays current project change status based on whether the newest changes
are saved locally or in SOLID pod. Clicking the status text/icon saves the
current state of the project to the corresponding location.

Avatar menu

Figure 5.7: Avatar menu

) Run SPARGL Query

Login

Figure 5.7| contains the following:

e Run SPARQL Query

Opens a SPARQL query editor and runs the user generated query, display-
ing results.

51

e Share

Allows the users to share the project and set view permissions for other
users.

Figure 5.8: Share menu

Data fetching links

YASGUI Query Tool J®
https://yasgui.triply.cc/?endpoint=http%3A%2F%2Fwww. imagesn

CSV URL 0®
http://www.imagesnippets.com/sparql/images?query=PREFIX+ns_

Direct Web URL (J
http://www.imagesnippets.com/sparql/images?query=PREFIX%20n

cURL POST Request
curl http://www.imagesnippets.com/sparql/images -X POST --d

App links

Direct application URL (J
http://localhost:3000/?mode WRL=https%3A%2F%2Fjaresan. inrup

Current file URL (J

https://jaresan.inrupt.net/test.json
Permissions: ‘ ‘

Private

Public/Read m

Clicking the ”Share” item in[Figure 5.7 opens[Figure 5.8. These controls allow
the user to share the project in different ways as follows:

e Data fetching links

Links used to fetch the data represented in the project. These links could
potentially be saved and used to retrieve specific data sets directly.

— YASGUI Query Tool
Opens YASGUI Query Too]ﬂ with the query representing the project
loaded.

— CSV URL
Downloads the result set directly as a CSV if the endpoint properly
supports it by adding format=text/csv parameter to the URL.

— Direct Web URL
Represents a GET request that directly returns the data set selected
in the project.

— cURL POST Request

Since some of the endpoints might not be set up in a way that enables
GET requests, the user is also provided with the option of running a
cURL POST request that accepts CSV (Header ”Accept: text/csv”).
The endpoint has to support this functionality.

Shttps://yasgui.triply.cc/

52

https://yasgui.triply.cc/

e App links
Links regarding the project and its usage in the app.

— Direct application URL
On access, launches the application and loads the project from the
project file saved

— Current file URL
Displayed if the user has the project saved in a Solid pod. Remote
location of the file.

— Permissions
Allows the user to set the file permissions directly.
Private - Can’t be viewed by anyone else than the current user
Public/read - Can be viewed by anyone but not edited
Public/write - Can be edited by anyone

Settings

Figure 5.9: Settings menu

Show labels: ®

@)

Label language: ®

fr
Application language:
en

View orientation:

Clicking on ”Settings” in opens the settings menu displayed in
[ure 5.9 containing the following:

e Show labels
Figure 5.10: Label

> AwardFile > Award File ®

> Category > Nobel Prize category ®

Turning this option on/off allows the able to switch between human readable
names for the entities or their IRI definitions.

Figure 5.10/shows such an example with the labels disabled on the left and
enabled on the right.

93

Human readable names are only displayed if they are provided by the end-
point.

e Label language

Figure 5.11: Label language

> award > récompense

Allows the user to choose a language of the displayed labels if available.

If the language selected is not available, the application defaults to display-
ing the English variant.

Figure 5.11 shows an example of English labels on the left and French on
the right.

e Application language

Language of the application interface. Czech and English are provided with
this work being published.

e View orientation

Allows the user to select between horizontal /vertical view for the setup of
the graph and the list screen.

File menu

Figure 5.12: File menu

File Settings

New

Save
Load

Properties

Figure 5.12| allows the user to create a new project, save/load one or change the
project’s properties.

o4

Figure 5.13: New file

Data schema URL: &
/samples/http---data.nobelprize.org-spargl.ttl

SPARQL endpoint: @
http://data.nobelprize.org/sparql

Title: ®
Untitled

Description: ®

From example

Single Court example Gov example

Figure 5.13 shows new project window, allowing the user to create a new
project with fields as follows:

Data schema URL

URL from which the data schema should be retrieved. This URL should
return a file in the format described in lsubsection 2.5.2

SPARQL Endpoint

URL of a SPARQL endpoint which will be queried for the data selected in
the application.

Title
Title of the project

Description

Additional textual description of the project.

Create

Creates the project via the application, loading the data and populating
the graph and the list.

From example

Users are also able to create a new project from a predefined set of examples
for testing purposes or getting to know the application. This set of examples
might not correspond to the examples displayed in |[Figure 5.13

95

Figure 5.14: Save & load

Download file 4,

Save to browser storage &

Last file: Untitled @11/05/2021, 22:07:10

Solid pod By URI

Your files:

= B/
[+ 3 .well-known
[events
2 inbox

[private

3 profile

3 public

[settings

[simplod_examples

O+

Clicking on ”save” in [Figure 5.12 opens the save menu with the following
items. Load menu is the same with opposite functionality:

e Download file

Downloads a file representing the project to the user’s disk. This file can
be than shared and distributed to allow users to load the same project in
the application.

e Save to browser storage

Saves the current state of the project to the browsers storage, allowing the
user to close the application and resume their work later. Due to the nature
of this application, only one file can be saved to the browser storage at one
time.

o Last file

Description of the last file saved in the browser storage in the format
"Project name @ DATE”.

e Solid pod

o6

Figure 5.15: Solid pod

L AL S LR T

Overwrite

Delete

1T Ld DN UU_TAGHIPITD

[test.json

—_—y mm—- g——

o

Save

Unauthorized users see a button Login to Solid Pod.

Authorized users see a list of their files in the Solid Pod they are currently

logged in.

Selecting a file allows the user to delete or save to it directly.

Clicking the "+ button allows the user to create a new file in the selected

folder.
e By URI

Figure 5.16: By URI

Download file 4,

Save to browser storage &

Last file: Untitled @11/05/2021, 22:07:10

Solid pod By URI

Figure 5.16|allows the user to specify the full URI path where the project file
should be saved. The authenticated user has to be granted write permission

to be able to save to this location.

o7

Edit original file

Figure 5.17: Properties

(i) Do you want to save the file?

Please select how you would like to save the file loaded from
https://jaresan.inrupt.net/simplod_examples/nobel_categories.json.

Edit original file Save

If the user has write access to the project loaded from a remote location, they
are asked to pick one of the following options:

e Edit original file

Saving the changes directly modifies the original file at its location.

e Save

Opens a dialog, allowing the user to save the file to a new location.

e Do not save

Closes the prompt, letting the user pick a location of their choice later on.

Project properties

Figure 5.18: Properties

Data schema URL: ®
/samples/http---data.nobelprize.org-spargl.ttl

SPARQL endpoint: ®
http://data.nobelprize.org/spargl

Title: ®
Untitled

Description: ®

Property languages: ®
enx frx

Rename prefixes ©

nobel custom u}

o8

Figure 5.18|allows the user to change the properties of the project. Fields in this
menu correspond to the same fields as in [Figure 5.13| with extra items as follows:

e Property languages
Languages that should appear in the resulting query for data properties sup-
porting different languages. Will return every available language if nothing
is specified.

e Custom prefixes

Allows the users to rename the prefixes found in the application.

Figure 5.18| represents an example where every "nobel” prefix would be re-
named to "custom”; e.g. "nobel:laureate” would become "custom:laureate”.

@ allows the users to delete their custom property entry.

Warnings

Figure 5.19: Cartesian product warning

Current selection is not a connected graph and might result in querying a cartesian
product.

This warning is displayed when the user queries for data in the graph that does not
represent a strongly connected component and could therefore result in querying
for a cartesian product.

Figure 5.20: Customized query warning

Current SPARQL Query has been manually edited, making any changes in the
application will remove these edits.

This warning is shown if the SPARQL query has been manually edited. By
changing anything regarding the selection, the user effectively removes these edits.

5.1.3 Graph interface

This subsection describes the graph part of the application and how users can
interact with it. First the graph as a whole is described with its controls and
controls for node separately following.

99

Graph component

Figure 5.21: Graph area

©®::00

?AwardFile
nobel:AwardFile

m[S]?Category]
]+ | nobel:Category [v
?LaureateAward

nobel:LaureateAward

?FileType
nobel:FileType

R+ | foaf:Organization | v

?2Award
2|+ | dbpo:Award [v
?Person

+[nobetPrasFie]]
[E[S[?NobelPrize]

|+ nobel:NobelPrize [v
?Laureate
?University

B[?Country |+ | rdfs:Class | v
+ dbpo:Country (v

Figure 5.21|shows the data schema as a graph where nodes represent entities and
edges represent the relationships between them. The users are able to interact
with the graph in the following ways:

Node drag

Users are able to position the nodes in the graph by dragging them. This
change in position is saved to the project model file and is persistent, loading
the project again will result in the same positioning of the nodes.

Empty space drag

Users are able to navigate around the graph by dragging an empty space
on it.

Zoom

Utilizing the mouse wheel/scroll controls, users are able to control the zoom
level of the graph.

Hover

Hovering over an edge highlights its source and target nodes. Hovering over
a node highlights all nodes connected to it with an edge and the correspond-
ing edges.

60

Figure 5.22: Graph node

> B|?Category
WS 'Categoryl]+ nobel:Category | A|

N 0 v owl:sameAs: rdf:Literal --> ?sameAs
& +| nobel:Category rllslocl: FL el > Folegony

rdfs:value: rdf:Literal --> ?value

skos:altLabel: rdf:Literal --> ?altLabel
?Categoryl skos:hiddenLabel: rdf:Literal --> ?hiddenLabel
|+

nobel:Category IVI skos:prefLabel: rdf:Literal --> ?prefLabel
Felisdlelbels relHLitErE] <> feeiagery |

Figure 5.22 represents a single entity from the data schema. Its controls are
as follows:

e Highlight
If some properties of the entity are selected, the entity is highlighted to
easily distinguish it from other entities in the graph that are not being
queried.

e M Delete entity
Remove the entity and its corresponding relationships from the schema
altogether. Curators can use this feature to split up large data schemas
into smaller, more specific chunks.

o &1 Copy entity
Creates a new instance of the same entity in the schema. This way users are
able to query for the same entity types with different entity instances. In
the nobel prize example provided users might want to query two different
sets of countries, one for the people and one for their respective universities.
Using only a single entity would not be able to achieve that in this case.

e "?Name”

Name of the entity in the resulting data set. Can be changed in the list
controls described in the next section.

e & Hide
Hides the entity from the schema.

e + Select all

Selects all properties of the given entity.
e prefix:Name
Entity type.

e v~ Expand/Collapse

Expands/collapses the container of the properties, displaying all data and
object properties available on the entity. Collapsing the container keeps the
selected properties visible.

61

e Property container

List of properties for the given entity. This list contains both data properties
and object properties. Selecting a property highlights both the node and
the property itself.

Figure 5.23: Edge

Properties: ?PrizeFile - ?Category X

?PrizeFile » ?Category

14 category --> © @ nobel:Category
if| B | ?PrizeFile fif| & | ?Category
X[+ | nobel:PrizeFile | v X[+ | nobel:Category [v
Properties: ?PrizeFile «- ?Category X

?PrizeFile - ?Category

1 category --> © 0 nobel:Category

?PrizeFile] B[?Category]
]+ | nobel:PrizeFile [v +[nobel:Category |v

MOEECEEgORE NEEECEREEoR =>|

As shown in [Figure 5.23, edges in the graph represent relationships between
entities in the data schema. If there exists an edge between two entities, there
exists at least on property on one of the entities that has the other entity as a
subject. The edge controls are as follows:

e Highlight

Hovering over an edge highlights it and also its corresponding nodes. High-

lighting a node from |[Figure 5.22| also highlights its all corresponding edges
and their end nodes.

e Click

Clicking an edge opens a menu with a list of properties the edge represents.
Users are able to perform all actions on these properties the same way as
they would via the list view.

Edges can also appear with different styles based on the user’s interaction
with them:

62

Figure 5.24: Edge states

e Default grey color

None of the properties represented by the edge are selected.

e Blue color

Some properties represented by the edge are selected.

e Green color

The edge has been selected by clicking on it and its description menu is
being shown. The user can deselect the edge by clicking anywhere else in
the graph.

e Dash pattern

All of the edge’s selected properties are marked as optional.

Figure 5.25: Graph toolbar

‘@@::®°|

Figure 5.25/ represents a toolbar with access to action shortcuts for the user’s

convenience as follows:

e @& Show all
Toggles all entities as shown that were previously hidden via [Figure 5.22
.

o & Hide rest
Toggles all entities that are not selected as hidden, functionally the same
as toggling entity as hidden directly in the graph via |[Figure 5.22| @.
A4

e »x Fit into view
Fits the whole graph in to the current graph container, allowing the users
to view all entities in the window at once.

63

e @ Deselect all

Deselect all currently selected properties and entities.

e O Run Query

Opens SPARQL Query editor and runs the query representing user’s selec-

tion.

5.1.4 List view

Similarly to the graph interface, the user can use the list view to achieve the
same results. This subsection describes the elements of the list view and how to

interact with them.

List overview

Figure 5.26: List overview

Available Selected
> award 2 Award aaoe
> city @ 2 City aaoe
> country 2 Country g aoe
> university ? University Gl t'[©
> Organization ? Organization Ul]:[©
> Person 2 Person goe
> Award File ® 2 AwardFile goe
> Nobel Prize category ® ? Category GI]:[©
> File Type ® 2 FileType goe
> Laureate ©® ? Laureate aaoe
> Laureate Award ® ? LaureateAward Gl]:'[©
> Nobel Prize ® 2 NobelPrize aaoe
> Prize File ® 2 PrizeFile aaoe
> Class ® 2 Class gaoe

The list displays all the entities to be found in the data schema with controls that
enable similar interaction to the ones described in lsubsection 5.1.3

Starting from the top:

64

List view controls

o Available tab

This tab displays all available entities in the data schema. If the user deletes
an entity from the project, this list is updated accordingly and the entity
is removed from it.

e Selected Tab

This tab displays only entities that themselves, or their properties, are
requested in the result set by the user.

Figure 5.27: Selected tab

Available Selected

Result column order:
1: Laureate +
2: name +
3: dateOfBirth +

V Laureate @ 2 Laureate goe
& name --> 2 name © (?) rdf:Literal
<Q dateOfBirth --> ? dateOfBirth © @ rdf:Literal

- e R ~ o~

The user is able to change the order of the requested resources in the top
part by dragging the entries to the desired position, resulting in different
order of the queried variables.

Figure 5.28: Column order example 1

EBTable = Response 900 results in 0.863 seconds
Laureate name dateOfBirth
Result column order:
1: Laureate 4 1 <http://data.nobelprize.org/resource/laureate/675> José Saramago *1922-11-16"<"
2: name +
3: dateOfBirth + 2 <http://data.nobelprize.org/resource/laureate/535> Betty Williams *1943-05-22""<""
3 <http://data.nobelprize.or ate/262> Herbert A. Hauptman *1917-02-14"" <"
Figure 5.29: Column order example 2
EB Table = Response 900 results in 0.359 seconds Fi
Result column order: dateOfBirth name Laureate
1: dateOfBirth <+
2: name + 1 "1922-11-16""" <P llww 2009/ XMLSchemaddate> José Saramago <http://data.nobelprize.org/resource/laureate/675>
3: Laureate +
2 "1943-05-22""" <Pl Al ool L2 Betty Williams <http://data.nobelprize.org/resource/laureate/535>
3 *1917-02-14"""<"Hp:l/ww 19/2001/XMLSchemabdate> Herbert A. Hauptman <http://data.nobelprize.org/resource/laureate/262>

65

e Search bar

This bar allows the user to filter out results by text search with immediate
response. The search is run on the labels, descriptions and the actual IRI
representation.

Figure 5.30: Search functionality

Available Selected

Lay

> Award File O

> Laureate (O

> Laureate Award &)

Entity rows

Each entity is represented by its own row entry in the list view.

Figure 5.31: Entity row

> Laureate ® ? Laureate goe

Every such row can be interacted with in the following ways:

e > Expand/Collapse icon

Clicking this icon allows the user to expand/collapse the properties linked
to this entity.

66

Figure 5.32: Expanded properties

V Laureate ®
< name --> ? name © @ rdf:Literal
Q dateOfBirth --> ? dateOfBirth © @ rdf:Literal
o birthday --> 2 birthday ®© (@ rdfLiteral
Q gender --> 2 gender © @ rdf:Literal
Q givenName --> ? givenName © @ rdf:Literal
o label --> 2 label © (P rdfLiteral
Q dateOfDeath --> ? dateOfDeath © @ rdf:Literal
Q familyName --> ? familyName © @ rdf:Literal
& sameAs --> ? sameAs © @ rdf:Literal

e Title hover

Hovering over an entity name displays its full IRI as a tooltip.

Figure 5.33: Entity title hover

http://data.nobelprize.org/terms/Laureat

e

> Laureate

e O hover

Hovering over the @ icon displays human readable description of the entity
if available (has to be supported by the endpoint set in the project).

Figure 5.34: Entity description

A laureate is a person or organization

who recieves one or several Nobel
Prizes.

> Laureate ®

Entity row controls

On the right side, every entity row includes also quick actions similar to the

actions in described [Figure 5.1.3

67

Figure 5.35: Entity description

? Laureate gt e ‘

e ? - Variable name

Variable name to be used in the result set of the SPARQL query as per
example:

Figure 5.36: Variable name field

Name of the variable in the resulting

SPARQL query

? Test |

Figure 5.37: Renamed variable result

Query +
° http://data.nobelprize.org/sparal

v PREFIX nobel: <http://data.nobelprize.org/terms/> <
2 v SELECT DISTINCT ?Test WHERE ({
3 ?Test a nobel:Laureate.

}

EB Table = Response 934 results in 0.551 seconds |Filter query results ‘ Pagesize:[50 v| X @

Test

1 <http://data.nobelprize.org/resource/laureate/675>

Right side of the entity row offers quick actions as follows:

Figure 5.38: Entity row actions

©

e (¥ - Select entity

Queries the entity under given variable name.

68

o (2]- Copy entity
Creates another instance of the same entity, same behaviour as in
fure 5.1.3.

e M - Delete entity
Deletes the entity instance from the data schema, same behaviour as in
Figure 5.1.3

e @ - Hide entity
Hides the entity in the data schema, same behaviour as in |[Figure 5.1.3|

Property row

Property rows are divided into data properties and object properties (tar-
geting other entities in the graph, resulting in a graph edge) with the property’s
target being specified at the end of the row. Every property has its own row in
the list view as follows:

Figure 5.39: Data property row

Data property ©
Qo name --> ? name © (@) rdfiLiteral

Figure 5.40: Object property row

eAs --> ? sameAs rdf:Literal
Object property © @

1% laureateAward --> © @ dbpo:Award

R

The control elements are as follows:

e @ - Select property

Selects the property under given variable name.

e © or % - Property type
An icon representing the type of the property, data or object.

o "XXX = ? or grey field”
XXX represents the property’s predicate.
? denotes variable name field, same as for entity rows.

Greyed out field is present on object properties, informing the user that
the name of the target entity has to changed in order to change the name
of this property as per the tooltip:

69

Figure 5.41: Object property variable field tooltip

This variable can't be renamed because

< familyNamg it is bound to an existing entity. To

change its name, rename the target
L sameAs --ZFSNITA

124 laureateAward --> © @ dbpo:Award

The user has to rename the entity directly if they wish to query the property
under a different name:

Figure 5.42: Object property target

> award 2 Award goe

e @ - Hide property from the result set

Hides the property from the result set. Useful when user wants to query
only entities with an existing relation but does not care about the property
value, e.g. user wants to query theses that have already been submitted
(have property "submitDate”) but does not care about the actual date
itself.

o ® - Mark property as optional
Marks property as optional.

5.1.5 Examples

The following subsection outlines example scenarios which can be followed to
introduce the user to the features of the application.

Every example is started from the new start of the application with default
settings. The reader is welcome to use the accompanying deployment of this
work on GitHuHf by clicking Demd[']

Nobel prize categories - graph

The first example is based on a data schema of Nobel prizes. This data schema
represents the information about Nobel prizes and their laureates. Let’s illustrate
a simple example where we would like to know what Nobel prize categories there
are.

First we have to load the data schema in the application, we can do that
either by accessing the demo applicationlﬂ with the data already encoded at or by
following the steps below:

1. Click File - New

Shttps://jaresan.github.io/simplod/

"https://jaresan.github.io/simplod/build/index.html

Shttps://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.
github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/
sparql

70

https://jaresan.github.io/simplod/
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql

2. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/example.ttl
Endpoint: https://data.nobelprize.org/store/sparql

3. Click Create

Figure 5.43: Nobel prize example default view
_ [mw|&]?FileType

[@]S[?AwardFile E =

|+ | nobel-AwardFile [~ [(&[+]robetFieType

B[?0rganization
B[?LaureateAward R+ | foaf:Organization | v

|+ | nobel:LaureateAward |V|
)| ?PrizeFile
|+ | nobel:PrizeFile | v

?NobelPrize
nobel:NobelPrize | v
|| ?Class -
g'; rdfs:Class | v SpLaureate gl*City

: |+ | nobel:Laureate v]+ [dbpo:City

B[?Award B)[?Person
+| dbpo:Award + | foaf:Person

ZAE
AE]

B[?University
2
|+ | dbpo:University [v @& ?Country
+ | dbpo:Country

When we open the application (depicted in [Figure 5.43)) we can notice the
"NobelPrize” entity in the graph.

Figure 5.44: NobelPrize entity

3| ?NobelPrize |
nobel:NobelPrize | A

nobel:category:robel:Category --> ?NobelPrize_category
n . foaf:Person --> ?Person
nobel:laureate: nobel:Laureate --> ?Laureate

nobel:prizeFile: nobel:PrizeFile --> ?PrizeFile
nobel:year: rdf:Literal --> ?NobelPrize_year
purl:hasPart: nobel:LaureateAward --> ?LaureateAward
purl:hasPart: onto:Award --> ?Award

rdfs:label: rdf:Literal --> ?NobelPrize_label

% |ED
+

Clicking on the entity, we can expand its properties and see what it is linked
to. Let’s go ahead and select the nobel:category property.

71

https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql

Figure 5.45: Selected property

@ ’?NobeIPrize|

nobel:NobelPrize | A

nebel:categeydnebel:Categony; =5 PNolbelPIZ Hcategony,

nobel:laureate: foaf:Person --> ?Person

nobel:laureate: nobel:Laureate --> ?Laureate
nobel:prizeFile: nobel:PrizeFile --> ?PrizeFile
nobel:year: rdf:Literal --> ?NobelPrize_year
purl:hasPart: nobel:LaureateAward --> ?LaureateAward
purl:hasPart: onto:Award --> ?Award

rdfs:label: rdf:Literal --> ?NobelPrize_label

JAE!
+

For a more detailed overview of what we have selected, we can take a look at
the list view under the graph, or next to it, in the tab selected.

Figure 5.46: List view

Available Selected
Result column order:
1: NobelPrize 4
2: NobelPrize_category +
Vv Nobel Prize ® 2 NobelPrize goe
@ label --> ? NobelPrize_label @ (?) rdf:Literal /l\
Q category --> 2 NobelPrize_categc © @ nobel:Category
& year --> ? NobelPrize_year © @ rdf:Literal

Here we can see we have selected the category property, named Nobel-
Prize_category. Also the entity itself is selected (checkbox next to Nobel-
Prize), which will select the prizes as well. For the sake of the example, let’s
leave the selection as is. Clicking the "Run SPARQL Query” at the top of the
screen, the editor opens and we can see the fetched results:

Figure 5.47: Run Query

T

©®::Q0
’\

72

Figure 5.48: SPARQL Results

Maximum number of results (limit): 100
Use limit:
Query +
o https://data.nobelprize.org/store/sparql

1 v PREFIX nobel: <http://data.nobelprize.org/terms/> < ’
2 v SELECT DISTINCT ?NobelPrize ?NobelPrize category WHERE {

2 ?NobelPrize a nobel:NobelPrize.

4 ?NobelPrize nobel:category ?NobelPrize category.

5 }

BB Table = Response 603 results in 0.173 seconds \Fllter query results Pagesize:[50 v| & @

NobelPrize NobelPrize_category

1 <http://data.nobelprize.org/resource/nobelprize/Literature/1947> nobel:Literature

2 <http://data.nobelprize.org/resource/nobelprize/Physics/2018> nobel:Physics

3 <http://data.nobelprize.org/resource/nobelprize/Physics/2020> nobel:Physics

4 <http://data.nobelprize.org/resource/nobelprize/Physiology_or_Medicine/1994> nobel:Physiology_or_Medicine
5 <http://data.nobelprize.org/resource/nobelprize/Literature/1950> nobel:Literature

6 <http://data.nobelprize.org/resource/nobelprize/Peace/2009> nobel:Peace

In we can see the result created by our selection. First we have
the NobelPrize which represents the IRI of a Nobel Prize. Second we have
the NobelPrize_category property, which is the textual representation of the
category for the given prize.

Considering we wanted to find only what categories Nobel prizes are awarded
in, this result is superfluous. To get rid of the prizes, we can go back to the list
view to deselect them:

Figure 5.49: List view

Available Selected

Result column order:

1: NobelPrize_category 4

vV Nobel Prize ® 2 NobelPrize @ 0O

O ' label --> 2 NobelPrize_label @ (?) rdf:Literal

< category --> ? NobelPrize_categc © @ nobel:Category
<Q year --> 2 NobelPrize_year © @ rdf:Literal
2 laureate --> © @ nobel:Laureate

Deselecting the entity will remove its IRI from the results set. Executing the
query again, we get the following:

73

Figure 5.50: Cleaner results

Query +
O https://data.nobelprize.org/store/sparqgl

1 v PREFIX nobel: <http://data.nobelprize.org/terms/>
2 v SELECT DISTINCT ?NobelPrize category WHERE { < ’
3 ?NobelPrize a nobel:NobelPrize.

4 ?NobelPrize nobel:category ?NobelPrize category.

5 |}

BB Table = Response 6 results in 0.173 seconds Filter query results ‘ Page size: | 50 V\ £3 Q

NobelPrize_category v

3 nobel:Physiology_or_Medicine
2 nobel:Physics
4 nobel:Peace
1 nobel:Literature
6 nobel:Economic_Sciences
5 nobel:Chemistry
Showing 1 to 6 of 6 entries < 1 >

In we can see that we have now only fetched the categories. Any-
body shown these results can immediately understand what they represent.

Now that we’ve fetched the data, we might want to share them. We can do
so by downloading the result directly in the CSV format and sharing that file:

Figure 5.51: Download CSV

BB Table = Response 6 results in 0.173 seconds |m‘ Page size: \ 50 VH 3 6

NobelPrize_category v

3 nobel:Physiology_or_Medicine
2 nobel:Physics
4 nobel:Peace
1 nobel:Literature
6 nobel:Economic_Sciences
5 nobel:Chemistry
Showing 1 to 6 of 6 entries < 1 >

We can also share the data by sharing a link to a third party tool populated
with our query. To do that, we can open the share menu via the "Share” button
at the top of the screen. By clicking on the €] icon for YASGUI Query Tool,

74

we copy the URL with the query encoded into our clipboard and can then just
paste it in the browser and view the result. We can also click the @ icon to launch
the tool directly.

Figure 5.52: Copy yasgui query URL

Data fetching links

YASGUI Query Tool J®
https://yasqui.triply.cc/?endpoint=https%3A%2F%2Fdata.nobel

CSV URL O®
https://data.nobelprize.org/store/sparql?query=PREFIX+nobel

Direct Web URL J®
https://data.nobelprize.org/store/sparql?query=PREFIX%20nok

CURL POST Request
curl https://data.nobelprize.org/store/sparql -X POST —dat

App links

To be able to share this file via this application, please save it
first.

75

Figure 5.53: Yasgui query results

{3 https:/data.nobelprize.org/store/sparq|

lv IPREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
2 PREFIX nobel: <http://data.nobelprize.org/terms/>

3 v SELECT DISTINCT ?NobelPrize category WHERE {
4 ?NobelPrize a nobel:NobelPrize.
5 ?NobelPrize nobel:category ?NobelPrize_category.
6 '}
8
9
EHB Table = Response M / e Chart 6 G 1%

NobelPrize_category

1 nobel:Literature

2 nobel:Physics

3 nobel:Physiology_or_Medicine
4 nobel:Peace

5 nobel:Chemistry

6 nobel:Economic_Sciences

We can also use "Direct access URL” which returns the results directly, or
get the cURL POST request to use in the terminal. All of the share options are

described in |Figure 5.1.2

Nobel prize categories - list view

What if we don’t want to navigate through the graph because it might seem too
clunky?

We can use the search functionality in the list view. We are looking for Nobel
prizes. By typing "prize” in the search field, we can see entity rows being filtered
out based on their matching text.

Figure 5.54: List view

prize Q

> Laureate ® 2 Laureate U] O
> Laureate Award ® ? LaureateAward U] O ®
V' Nobel Prize ® 2 NobelPrize goe

O label --> ? NobelPrize_label @ (?) rdf:Literal

Qo category --> 2 NobelPrize_categc (© (2) nobel:Category
Q year --> ? NobelPrize_year © @ rdf:Literal
A bidacianen . A A it 1 mremntn

In this case, we can select the property directly by checking the box on its
left side. The rest of the steps is the same as the end for the graph variant.
The graph and list are connected and new changes are reflected in both of these
components.

Nobel prize laureates

Continuing with the example of nobel prizes, let’s try an example where we’d like
to get nobel laureates with some additional info about them. Let’s begin with
the default view by following the same steps as previously, either accessing the
example directlyﬂ or by following the steps below:

1. Click File = New

2. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/example.ttl
Endpoint: https://data.nobelprize.org/store/sparql

3. Click Create

Figure 5.55: Nobel prize example default view

?AwardFile

nobel:AwardFile I v |

mj[E]
@+

?FileType
nobel:FileType [v

izl E]
B+
R+

(mjE]

?Category
nobel:Category [v
?LaureateAward |

B+

nobel:LaureateAward I v I

imi[E]
&+

?0rganization
foaf:Organization [v

?University
dbpo:University | v

)

?PrizeFile
nobel:PrizeFile | v

|@]?Award

+[dopoavara]

(]

FAE]

AE!

JAE]

?Person

AE!
+ @

?NobelPrize
nobel:NobelPrize | v

?Laureate
nobel:Laureate [v

JJW
+|©

R+

dbpo:City
=)[?Country
+| dbpo:Country
B[?Class|
&+ | rdfs:Class | v|

Yhttps://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.
github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/
sparql

77

https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql

Since we are interested in nobel prize laureates, we can click the Laureate
entity to see what relationships there are:

Figure 5.56: Laureate entity properties

(R i | R

B|?Laureate |
+ | nobel:Laureate |AI

y dbpedia2:dateOfBirth: rdf:Literal --> ?Laureate_dateOfBirth
Jersit dbpedia2:dateOfDeath: rdf:Literal --> ?Laureate_dateOfDeath
Yy dbpo:affiliation: dbpo:University --> ?University
gbpo:ginng:ace gbpo 8|ty - ’?Cnty?cou

o:birthPlace: 0:Country --> n
Iy S
= 0:deathPlace: dbpo: ountry --> untry
?Co foaf:birthday: rdf:Literal --> ?Laureate_birthday
&+ | dbp| foaf:familyName: rdf:Literal --> ?Laureate_familyName

foaf:gender: rdf:Literal --> ?Laureate_gender

foaf:givenName: rdf:Literal --> ?Laureate_givenName
foaf:name: rdf:Literal --> ?Laureate_name
nobel:laureateAward: dbpo:Award --> ?Award
nobel:laureateAward: nobel:LaureateAward --> ?LaureateAward
nobel:nobelPrize: dbgg :Award --> ?Award
nobel:nobelPrize: nobel:NobelPrize --> ?NobelPrize
owl:sameAs: rdf:Literal --> ?Laureate_sameAs
rdfs:label: rdf:Literal --> ?Laureate_label

2 |ED

Let’s say we are interested in the laureate’s birth country, their name and ad-
ditional information about the prize they received. If we take a look at the prop-
erties, the corresponding ones would be dbpo:birthPlace (dbpo:Country),
foaf:name and nobel:nobelPrize (nobel:NobelPrize) respectively. The se-
lection would look as follows:

Figure 5.57: Laureate properties of interest

[S]?NobelPrize
|+ | nobel:NobelPrize | v

A
W|S|?University | &+ | nobel:PrizeFile | v

Y|+ | dbpo:University (v

|+ | dbpo:Country | v

nobel:Laureate
clpedithPkee: ChpeECOURIR == NCOURiR
jfoatnamedidt-literalt=galfaliicateNname]
nebelnerelRizEdnoke :Nobe| BiizEE==¥NeBE|Rfize

We can notice that the entities for nobel:NobelPrize, dbpo:Country are
highlighted as well, this is because we have selected the properties targeting them.
Let’s say for the dbpo:Country we are interested in its label rdfs:label. For
nobel:NobelPrize, we would like to know for which nobel:category it was
awarded. After selecting all of this information, the resulting selection would
look as follows in the graph:

78

Figure 5.58: All properties of interest

[[?Award 2Parson &[?NobelPrize
| onto:Award e |®|+ nobel:NobelPrize[V]

nebel:categonydnobel:CategonE>INobeRiizeNcategony) |

2
| ©]?Country

E T o_nto:Country

rdis:labedrdf:lang Sting>eountyalabel

University
nto:University .

nobel:Laureate | v
foaf:namegratliteralE=>y¥alicateMname)
nobelznekbelRrizegnobel:Nebe| RiizEk >R Nobe|Riize}
onto:binthRIaceJontoCoun A=Y County]

We can clean up the graph by removing data we aren’t interested in. We can
do this by pressing the ® icon in the top right of the graph, which will in turn
hide all the data that is not requested.

We can also manually delete every single entity via the W icon, this in turn
would make it impossible to get the entities back for this project (as opposed to
@ which just hides the entities, they can be made visible afterwards).

After hiding the data, let’s arrange the nodes better by moving them around.
After cleaning the graph up a bit, we get something that could look as follows:

Figure 5.59: Cleaned up selection

7] S| ?Laureate
]+ | nobel:Laureate | v

foarnamegrariica s alcacaname)
nebel:nekelBrizegnebel:Nebe| Brizek>¥Nobe|Rrize]

eneditiPlkEes: ChltoiCeuniny <> ACeuniy

?NobelPrize

onto:Country %]+ nobel:NobelPrize [v
relisdElel: ridengSiing = 2Couniny_kbe] | nebelkeeiegeny: RekelkCeiegery =+ tNekelPi:_caiagony |

This is already a valid selection. Using the graph quick action toolbar in the
top right, we can hit the @ button and execute the query for the following results
(the order might differ based on the specific order of selecting the properties):

Figure 5.60: Execute query button

\@@::®o|

79

Figure 5.61: Results

EB Table = Response 3132 results in 5.965 seconds
Laureate Laureate_name NobelPrize Country
<http://data.nobelprize.org/r
<http://data.nobelprize.or L <http://data.nobelprize.org/resou
1 André Gide esource/nobelprize/Literatur
glresource/laureate/618> ; ree/country/France>
e/1947>
<http://data.nobelprize.org/r
<http://data.nobelprize.or N <http://data.nobelprize.org/resou
2 ’ André Gide esource/nobelprize/Literatur
glresource/laureate/618> ree/country/France>
/1947>
<http://data.nobelprize.org/r
<http://data.nobelprize.or L <http://data.nobelprize.org/resou
3 André Gide esource/nobelprizeLiteratur '
gfresource/laureate/618>) ree/country/France>
e/1947>
<http://data.nobelprize.org/r
<http://data.nobelprize.or <http://data.nobelprize.org/resou
4 Gérard Mourou esource/nobelprize/Physics/
glresource/laureate/961> ree/country/France>

2018>

<http://data.nobelprize.org/r
<http;//data.nobelprize.or <http://data.nobelprize.org/resou
5 Gérard Mourou esource/nobelprize/Physics/)
glresourcelaureate/961> 018 ree/country/France>
>

You might notice that some of the rows repeat themselves. This is due to
the Country_label having entries in multiple languages. If the data is set up
properly, properties utilizing multiple languages are of type rdfs:langString. To
query only for English variants of the country labels, we can change the project

properties:

Figure 5.62: Results

File Settings

New

Save

Load

Properties (—

80

NobelPrize_categoj

nobel:Literature France

Frankrike

nobel:Literature

Frankrike

nobel:Literature

nobel:Physics France

nobel:Physics Frankrike

Figure 5.63: Results

Data schema URL: ®
https:/fjaresan.github.io/simplod/examples/example.ttl
Reload schema

SPARQL endpoint: ®
http://data.nobelprize.org/store/sparal

Title: ®

Untitled

Description: ®

Property languages: ®

en x

Rename prefixes ©

Doing this ensures that all of the selected properties will be queried in their
English variant if their type is rdfs:langString. You can set multiple languages
this way, the result set will then contain all of them. With the properties set to
query for English only, the results look as follows:

Figure 5.64: Results

EBTable = Response 1044 results in 4.937 seconds
NobelPrize_catego
Laureate Laureate_name ~ NobelPrize Country Y Country_label
<http://data.nobelprize. y
X nobelpri nobelprize.
1 orgjresource/laureate/6 André Gide nobel:Literature France
18 belprize/Literature/1947> e/country/France>
>
<http://data.nobelprize.
<http://data.nobelpri <http://data.nobelprize.
2 orgfresource/laureate/9 Gérard Mourou)) nobel:Physics France
o belprize/Physics/2018> e/country/France>
>
<http://data.nobelprize.
N J/data.nobelpri nobelprize.
3 orgjresource/laureate/5 Albert Schweitzer nobel:Peace France
15 belprize/Peace/1952> e/country/France>
>
<htp://data.nobelprize. . .
. <http://data.nobelpri nobelprize. gy_or.
4 orgjresource/laureate/3 Alexis Carrel)) France
o belprize/Physiology_or_Medicine/1912> e/country/France> Medicine
>
<http://data.nobelprize.
e a—aim nobelpri nobelprize. nobel:Physiology_or

While this query is valid, a person interested in this information might not
want the IRIs to be present in the result set, the textual representation provided
via labels might be sufficient. To get rid of the IRIs in the result set, we have to
deselect the entities via the list view as follows:

Figure 5.65: Selected entities

Q
> Laureate ® 2 Laureate goe
> Nobel Prize ® 2 NobelPrize goe
> country 2 Country goe

81

Figure 5.66: Deselected entities

> Laureate ® 2 Laureate goe
> Nobel Prize ® 2 NobelPrize [:_]—l 0O
> country 2 Country 0ogoe

This effectively removes the IRIs from the query and displays only the queried
properties (in this case the labels we selected). The result is more concise and
shorter:

Figure 5.67: Result set without IRIs

FA Table = Response 1042 results in 4.723 seconds ‘F ter query results ‘ Pagesize:[50 v| X @

Laureate_name NobelPrize_category Country_label

1 André Gide nobel:Literature France
2 Gérard Mourou nobel:Physics France
3 Albert Schweitzer nobel:Peace France

4 Alexis Carrel nobel:Physiology_or_Medicine France

Nobel prize laureates - part 2

We have retrieved information about Nobel prize laureates and about the awards
they received. Let’s extend the search by querying for the places where the
laureates passed away.

Checking we can see there are two properties of interest, namely
deathPlace (dbpo:Country) and dateOfDeath. Let’s query for deathPlace
(dbpo:Country) then. Understandably this will result in a data set of only
deceased laureates, since laureates with no such property will be omitted from
the result set, as the property is marked as required, not optional. Marking the
property as optional would allow to search for both living and deceased laureates
with place of death filled in where applicable.

Updated selection and the results with death place under Country_label
would look as follows:

Figure 5.68: Selection with place of death

B[>Laureate]

+| nobel:Laureate | v
dbpe:bithBlaceddbpe:ColntE >R ColntLy,
dbpe:deathRIace: de =5 UCOUMIRY
rale>y7FalireateMname)

rdfzlite
nebel:nekelRiizednebel:Nobe|RiizEE:=)INobe|Riize
1

82

Figure 5.69: Results with place of death

EB Table = Response 1042 results in 4.723 seconds [Filter query results | Pagesize:[50 v| X @

Laureate_name NobelPrize_category Country_label

1 André Gide nobel:Literature France
2 Gérard Mourou nobel:Physics France
3 Albert Schweitzer nobel:Peace France

4 Alexis Carrel nobel:Physiology_or_Medicine France

You might notice the new result didn’t change from This is
because we are querying for a single country. Our query actually translates
to find laureates who were born and died in the same country due to
the links/edges being pointed to the same Country entity. While this is not an
invalid query and can have its uses, it is not what we are looking for. This is
where we need to use the €] icon on the Country node in the graph (or use the
same on in the list view) and create a separate entity instance for Country to
introduce a distinction between the death place and birth place.

Clicking the €] icon on the Country entity, we get the following:

Figure 5.70: Selection with cloned Country entity

B ?Laureatel

" L
Ir LobeI.LaEate |v| —
CloCRCOURY = ACOURRY
opeICURTY = RCOURRY
rdf:literalE =7 ¥aurcateMname]
neloelENebelPrizs = ANsbelPize

[&[?Country_1 |

dbpo:Country |V|

% |Eb
+

dbpo:Countrﬂ:l
relisdelbel relHl el = 2Ceuniny_Ebe] |

By copying the node, the Laureate entity has new properties added that
target the new Country entity:

83

Figure 5.71: Newly listed properties

?Laureate

N

nobel:Laureate |A

Next we just

We again pick label on the newly copied Country_1 and remove the IRI
specification by deselecting the checkbox in the list view for Country_1. Exe-
cuting the query via @ now yields results even if the laureate wasn’t born and

dbpedia2:dateOfBirth: rdf:Literal --> ?Laureate_t dateOfBirth -
dbped|a2 daleDeath rdf Literal --> ?Laureate_dateOfDeath

M=
--> ?Count 1‘-—

: IFEG PE W = UCEUmEY
dopodeathilace: dbpo: Country > 7Courtry_1 <
foaf:birthday: rdf:Literal --> ?Laureate_bi
foaf:familyName: rdf:Literal --> ?Laureate faminame
foaf:gender: rdf:Literal --> ?Laureate_gender
foaf:givenName: rdf theral -=> ?Laureate_glvenName
foat:namegrdi:l)

nebelmebelPaze m
owl:sameAs: rdf: theral — ?Laureate_sameAs
rdfs:label: rdf:Literal --> ?Laureate_label

have to remove the old deathPlace and use the new one:

Figure 5.72: Proper selection

?Cou 1

—+| dbpo:Country | A

dbpo:successor: rdf-Literal --> ?Country 1_successor
sameAs rdf:Literal --> ?Country_1_sameAs
raisilabe JrdtliteralE=

dbpedia2 dateOmeh rdf:Literal - ?Laureate_dateOfBirth
dbpedlaz dateOfDealh rdf: I.lteral --> ?Laureate_dateOfDeath [e

dbpo bn'thPlace db Country --> ?Country_1
dbpo:deathPlace: dgo :Country --> ?Country
dbpe:deathizlace =5 PCeumERY_1
foaf:birthday: rdf:Literal --> ?Laureate_birthday
foaf:familyName: rdf:Literal --> ?Laureate_familyName
foaf:gender: rdf:Literal --> ?Laureate_gender

foaf: gvenName rdf Literal --> ?Laureate_givenName

ﬂL&mﬂu&m
nowl-nobﬂprw elbeNehelAEzs =& MNebalPize
owl:sameAs: rdf:! Lneral > ?Laureaha sameAs
rdfs:label: rdf:Literal --> ?Laureate_label

died in the same country:

Figure 5.73: Proper death place results

[Table = Response 768 results in 33.009 seconds [Filter query results | Pagesize:[50_v] & @
| Laureate_name ! NobelPrize_category Country_label ! Country_1_label

1 André Gide nobel:Literature “France"®e" "France"®e"

2 Alexis Carrel nobel:Physiology_or_Medicine “France"®e" "France"®e"

3 Charles Richet nobel:Physiology_or_Medicine "France"®e" “"France"®e"

4 Claude Simon nobel:Literature “"Madagascar"®e" "France"®e"

5 André Lwoff nobel:Physiology_or_Medicine "France"®e" “"France"®e"

84

If we were looking for all laureates (living and dead) and just adding the
information of their death place if it exists, we could mark the deathPlace
property as optional via the list view or clicking the edge:

Figure 5.74: Death place optional

Properties: ?Laureate ¢~ 2Country_1 X

2Laureate - ?Country_1

& birthPlace --> ® (?) dopo:Country
@ deathPlace --> @ @ dbpo:Country
B&]?Country_1 A
|+ dbpo:Country
\3 reisdelbelk reltLitere] = 2Ceuntny_i_lkbel |
B[?Laureate]
=+ nobeI:Laureate|V|
dbpe:birthizlaceddbpe:ColntyE=32Colntny;
cloporeeiPlkee: clopeiCouminy = ACouminy_1
el fierel = Pleureeis neme 2l
nebelzNebElRIiZEINOLE:NOLEIRIiZEE=RINOLE|RiZE =

Which in turn returns all laureates, living and dead, with the country of their
death if it’s specified:

Figure 5.75: Results with death place optional

BB Table = Response 1093 results in 30.366 seconds [Filter query results | Pagesize:[50 _v] & @

Laureate_name NobelPrize_category Country_label Country_1_label
1 André Gide nobel:Literature "France"®e"
2 Gérard Mourou nobel:Physics "France"®en
3 Albert Schweitzer nobel:Peace "France"®e "Gabon"@e"
a Alexis Carrel nobel:Physiology_or_Medicine "France"®e" "France"®e"

5 Charles Richet nobel:Physiology_or_Medicine "France"@e" “France"@en

Another nice example would be to query only for living laureates. However,
such an example would require the ability to constrain the values of properties,
which is not a feature implemented in the graph tool. However, users can also
directly edit the SPARQL query, should they want to tweak it.

German books - Save & Load example

Let us finish with an example that will show the loading and saving capabilities
of the application. This example is based on B3Kat cataloguing platformm which
we will use to fetch data about books and their relevant information.

Unlike in the previous examples, here we will be starting from an already
curated example project file. Files like these can be created by appointed users
to separate bigger data sets into smaller, better manageable chunks. The data
schema used in this example has been curated directly via the application from
a ttl file available at GitHub[]

Ohttps://www.kobv.de/services/katalog/b3kat/
"https://raw.githubusercontent.com/jaresan/simplod/master/public/german_
books.ttl

85

https://www.kobv.de/services/katalog/b3kat/
https://raw.githubusercontent.com/jaresan/simplod/master/public/german_books.ttl
https://raw.githubusercontent.com/jaresan/simplod/master/public/german_books.ttl

We will also be utilizing a Solid pod for data persistence. Before proceeding
further, it is important we follow the steps outlined in [subsection 5.1.1| and have
the Solid pod set up with the necessary application permissions up correctly.

Let’s open the application Demo - https://jaresan.github.io/simplod/
build/index.html.

To start with the example, we will first load the appropriate project file by
navigating to File — Load — By URI.

In the input field we put https://jaresan.github.io/simplod/examples/
german_books. json and press Load.

Figure 5.76: Load by URI

Upload file 1,

Load from browser storage &

Last file: Untitled @29/06/2021, 20:58:16

Solid pod By URI &

Iic/german_books.json’ Load

Upon loading the project file, we can see the default view for the curated book
data set:

Figure 5.77: Graph loaded

?Book mEIHE
+ | bibo:Book &+ | frbrcore:ltem | v

] ?Organization |
foaf:Organization | v |

|)| ?Series
R+ | bibo:Series v

JAE!
—+

By clicking on the edges between the nodes, we can inspect the relationships
they represent:

86

https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/examples/german_books.json
https://jaresan.github.io/simplod/examples/german_books.json

Figure 5.78: Edge descriptions

Properties: ?Book ¢-> ?Item X

?Book = ?Item

@ exemplar --> © @ frbrcore:item

2| ?ltem
+ | frbrcore:ltem | v

% |ED

\/

By inspecting all three edges presented, we will get the following information
for the existing relations in the data schema:

Figure 5.79: Edge descriptions

Properties: ?Book «-> ?ltem X

2Book - ?Item

@ exemplar --> [@ frbrcore:item
Properties: ?Book «- ?Series X
?Book - ?Series

@ isPartOf --> @ (?) bibo:Series
Properties: ?Item «- ?Organization X

?ltem - ?20Organization

@ owner --> @ () foat:Organization

From this, we can gather that a book can have an exemplar item which in
turn is owned by an organization. A book can also be a part of a series.

Let’s find books with their respective series, should they be a part of one.
If we are looking for books, we might also be interested where we could borrow
them from. We are then going to query their respective exemplar Items, and for
the items, we will select the Organizations that represent the owner.

As usual, we want to get the labels or titles for each item. Organizations
in this case also contain the property homepage which could be useful as a
reference to the owner as well. With all of this data in mind, the selection would
look as follows:

e Book
bibo:isbn - ISBN of the book
dce:title - Title of the book
dcterms:partOf, Optional - Book series

frbrcore:exemplar - Exemplar of the book

87

e Series

bibo:shortTitle - Title of the series
o [tem

frbrcore:owner - Organizational owner of the exemplar
e Organization

foaf:homepage - Homepage of the organization

foaf:name - Name of the organization

Figure 5.80: Graph selection

frbrcore:ltem | v

eEHORgEZ o ~5 FORgEZon |

bibo:Book | v

blvedsbn: riHTER] <> Yok _Hon
raf:literalle=4BOoKME!tlS
[deteimszisEant ©HbIe:Serie k=S eries)
filoreoresEmplEr filofeoredicm == 2iem

i E]
|+

bibo:Series
bibe:sheitliticdrdiUiterale=¥2SericSEshotlitle

Notice the dashed edge, this means the relationship between book and its
series is optional, meaning we will query for all books and return their respective
series, if existing. Not marking this edge as optional, we would only query for
books that exist in a series. In the list selection, we can deselect the entities
themselves to omit the IRIs from displaying in the result set:

Figure 5.81: List selection

Result column order:
1: Book_isbn +
2: Book_title +
3: Series_shortTitle 4
4: Organization_name <
5: Organization_homepage +

| (

> Book 2 Book N gnoe

> Series 2 Series goe

> Organization ? Organization D—I]j ©

> Item 2 Item goe
o

38

We can run the query via the @ icon. For the demonstration purposes of this
example, it would be a good idea to limit the maximum number of results we can
retrieve to 100. The data set provided by B3Kat spans over 25 million titles and
querying across them all might take a significant amount of time.

Figure 5.82: Query limit

Maximum number of results (limit): 100
use limit: @) (\ /i
Query +

http://lod.b3kat.de/sparql

After changing the limit and running the query again by pressing the ©, we
can get the following results:

Figure 5.83: Results

- Book_title

Series_shortTitle

Organization_homepage

Book_isbn . Organization_name
5 0122897455 ::gts resources of arid and semiarid Hochschulbibliothek Amberg <http://bibliothek.oth-aw.de>
44 0231054769 The elements of cinema Hochschulbibliothek Amberg <http://bibliothek.oth-aw.de>
45 0231054777 The elements of cinema Hochschulbibliothek Amberg <http://bibliothek.oth-aw.de>
62 0387117830 Systemtechnik Hochschulbibliothek Amberg <http://bibliothek.oth-aw.de>
3 0387158782 MeB- und Priiftechnik Halbleiter-Elektron. Hochschulbibliothek Amberg <http://bibliothek.oth-aw.de>
78 0444861858 Handbook of econometrics Hochschulbibliothek Amberg <http://bibliothek.oth-aw.de>

What if we want to save this result to our Solid pod? We just go to File —
Save. If we are logged in, we already see our Solid pod files. If we are not logged
in, we can log in either directly through the button in this menu, or through the
top right avatar menu.

Figure 5.84: Save menu

Download file .4,

Save to browser storage & ‘

Last file: German books @29/06/2021, 21:43:32

Solid pod

-
Login to see your Solid Pod files <

By URI

89

After successfully logging in, we can see our the list of our Solid pod files. We
can list through the folders and in each one click the 4 icon to save the file in
that location. Let’s go with the root folder and click the 4 icon.

Figure 5.85: Solid pod files

‘ Download file .4, ‘
Save to browser storage &
Last file: German books @29/06/2021, 21:43:32

Solid pod By URI

Your files:

E B/

3 .well-known
[events

3 inbox

[private

3 profile

3 public

[settings

3 I R I R

2 simplod_examples

O+

A\ =]

®

After clicking the 4 icon, we just have to pick a file name. Let’s type in
german_books and click on save or hit enter.

Figure 5.86: New filename

[simplod_examples

B | german_books| ’ Save

If the file got saved correctly, we are greeted with a notification confirming
the new save location:

Figure 5.87: File saved notification

@ Saved to

https://jaresan.inrupt.net/german_books.js
on!

We can also see the new file location in the status bar. Hitting ctrl4s now
saves the changes to the new remote location.

Figure 5.88: Status bar after remote save

German books ¢ File saved at https://jaresan.inrupt.net/german_books.json

90

Finally, we might want to share this project file among other users. To do
that, first we need to set its permission appropriately from the Share menu in
the top-right.

Figure 5.89: Permission drop-down

5 Run SPARGL Query S)

@00

From the drop-down list, we can select Public/read, so that every user will
be able to read this project file, but only we, as the owner, will be able to edit it.

Figure 5.90: Permission drop-down

Data fetching links

YASGUI Query Tool J®
https://yasgui.triply.cc/?endpoint=http%3A%2F%2Flod.b3kat.d

Direct Web URL
http://lod.b3kat.de/sparql?query=PREFIX%20rdf%3A%20%3Chttp%

CURL POST Request (J
curl https://simplod.herokuapp.com/sparql -X POST --data 'e

App links

Direct application URL (J
http://localhost: 3000/ ?mode WRL=https%3A%2F%2Fjaresan. inrup

Current file URL (Jl
https://jaresan.inrupt.net/german_books. json

Private
Public/Read C‘ m

Public/Write

If everything goes correctly, the action is confirmed by a notification and we
can proceed to copy the file URL via the €] icon and share it among other users.

91

Figure 5.91: Permissions changed successfully

@ Updated permissions!

Data fetching links

YASGUI Query Tool J®
https://yasqui.triply.cc/?endpoint=http%3A%2F%2Flod.b3kat.d

Direct Web URL
http://lod.b3kat.de/sparql?query=PREFIX%20rdf%3A%20%3Chttp%

cURL POST Request
curl https://simplod.herokuapp.com/sparql -X POST --data 'e

App links

Direct application URL (]|
http://localhost:3000/?mode WURL=https%3A%2F%2Fjaresan. inrup

Current file URL &
https://jaresan.inrupt.net/german_books.json

Permissions: =~ Public/Read

The copied URL (in this case https://jaresan. inrupt.net/german_books.
json) leads directly to the model file in our Solid pod. Same way as in the first
step of this example this URL can be directly loaded in the application by File
— Load — By URIL

5.2 Administrator documentation

In the first part this section describes the steps to take to deploy the application.
The second part focuses on providing the application with initialization inputs to
change what data the application displays when the users enter from a specific
source.

5.2.1 Prerequisites

The minimum required configuration to be able to follow the deployment and
development steps are:

1. NodeJ9
Version > 10.0.

2. Npuf™]

This documentation is written for npm, but other package managers, e.g.
yarnY] can be used as well.

?https://nodejs.org/en/
Bhttps://www.npmjs.com/
“https://yarnpkg.com/

92

https://jaresan.inrupt.net/german_books.json
https://jaresan.inrupt.net/german_books.json
https://nodejs.org/en/
https://www.npmjs.com/
https://yarnpkg.com/

5.2.2 Data schema creation

As mentioned in [section 2.5, one of the required inputs for the application is
a data schema. Ome of the ways to create such a schema is by providing an
endpoint containing the data to a LinkedPipes ETL |Klimek and ékoda‘ ﬂ2017ﬂ
pipeline created by the supervisor of this thesis.

This subsection describes how to create a data schema from an endpoint
utilizing the demo instancdfl and the pipeline speciﬁcatiorm

Preparing the endpoint specification

Before running the pipeline, we have to create an input file specifying the end-
points we would like the pipeline to use. For this purpose we can edit the template
file on GitHu with our own endpoint by replacing http://vocabularies.
unesco.org/sparql with the URL of the SPARQL endpoint of our choosing.

We can also provide more endpoints at once, as shown in a template file on
GitHuHﬂ However, in such a case case, the pipeline would aggregate all the
results into one .ttl file, which might not be desirable. To prevent this, we can
always update the single endpoint file and run the pipeline again.

We then make the file remotely accessible and in the steps outlined below can
provide the URL to the pipeline. For the sake of this example, let’s consider the
file hosted on GitHub™]

Running the pipeline

To run the pipeline with our endpoint specification, we can follow these steps:

1. Access https://demo.etl.linkedpipes.com/#/pipelines and click on
the upload button:

Figure 5.92: Upload button

LP-ETL Demo PIPELINES EXECUTIONS ~ TEMPLATES PERSONALIZATION HELP

Rakeb Demo
NUSL-TRANSFORM
DCAT-AP dump to LP-DAV
Rakeb Demo

Rakeb Demo

Andruian stress test

JSON to RDF

I»

Bonn Produktibersicht 2016

Pfistupnost budov Brno +
EDAS > CKAN (KMD) e
DBpedia datasets

5https://demo.etl.linkedpipes.com/#/pipelines

6https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_
schema_pipeline. jsonld

Yhttps://github.com/jaresan/lod-cloud/blob/master/endpoint.ttl

¥https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.
ttl

Yhttps://raw.githubusercontent.com/jaresan/lod-cloud/master/endpoint.ttl

93

http://vocabularies.unesco.org/sparql
http://vocabularies.unesco.org/sparql
https://demo.etl.linkedpipes.com/%23/pipelines
https://demo.etl.linkedpipes.com/%23/pipelines
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://github.com/jaresan/lod-cloud/blob/master/endpoint.ttl
https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.ttl
https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.ttl
https://raw.githubusercontent.com/jaresan/lod-cloud/master/endpoint.ttl

2. Provide the .jsonld file Speciﬁcation@l and click "Upload”:
Figure 5.93: Upload detail

Upload file
O From URL

1 Update existing templates

Selected file: simplod_data_schema_pipeline.jsonld

SELECT FILE UPLOAD

3. The graphical representation of the pipeline is shown on successful upload.
If the graph is not in edit mode, click on the "edit mode” button in the
bottom right:

Figure 5.94: Pipeline graph

SPARQL€onstruct to file list 1/
et data examples
\ \

—>

EDIT MODE

4. Double click on the first node in the graph marked as "HTTP get” to enter
its edit mode:

Figure 5.95: Pipeline start node

HTTP get
LOD Cloud
SPARQL endpeifits

SPARQL construct
Queries for individual endpoi?

%RDF single graph ¢
’ARQL endpoint list to single grapt
AEP/ Classes and instance numbers
ARQL construct

5. Change the File URL to point to your .ttl file with the endpoint specifi-
cation. The filename is not important for our use case, but make sure to
specify .ttl as suffix:

2Ohttps://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_
schema_pipeline. jsonld

94

https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld

Figure 5.96: Start node options
HTTP get ® X

INHERITANCE GENERAL HIERARCHY

File URL"
https://raw.githubusercontent.com/jaresan/lod-cloud/master/endpoint.ttl

File name "

Endpoint.ttl

I Force to follow redirects
J® Encode input URL

I Use UTF-8 encoding for redirect

User agent

DISCARD CHANGES SAVE CHANGES

6. After the data is properly changed, click on the ”execute” button at the
bottom of the graph:

Figure 5.97: Execute button

Q SPARQL construct /
*)Queries for representative resources'

list to single graph) 2P
stance numbers (Ye5iout

Chunked met

N

® execure

7. Wait for the execution of the pipeline to finish. The success of the run is
symbolized by the status bar or by the final node’s edge being green:

Figure 5.98: Execute button

Qecutlon of Simplod data schema pipeline

SPARQL construct to file list
Get data examples
SPARQL construct l//
Queries for getting data examples
fg(}reate zip archive ¢
0 QDARNI ~anctrint l

8. The process can also fail for various reasons, this fact is similarly by an icon
and by the edge of the failing node being red. This work does not cover
troubleshooting for failing pipeline executions.

itput

95

Figure 5.99: Execute button
() Execution of Simplod data schema pipeline
7\

HTTP get
LOD Cloud
SPARQL endpeints

9. Click on the output (yellow) socket on the last node of the graph:

Figure 5.100: Results location

SPARQL construct to file list
Get data examples

SPARQL construct
Queries for getting data examples'
Output

Rep, Create zip archive ;}\
SPARQL construct
Queries for getting data exampls

SPARQLConstruct to file list
et data examples

10. Click on the download icon to get an archive with the results:

Figure 5.101: Download results

samples.zip
L] 8.50 kB

The resulting .ttl can then be directly loaded in the application. The .ttl file
generated by this example can be found on GitHub?T]|

5.2.3 SPARQL proxy

As described in [section 4.3] the application might also require a proxy to be used
in the case of failing requests due to various reasons, mainly due to CORS and
Same-Origin policy issues. To prevent this, this work is also submitted with an
Expresﬂ application, that can be hosted and used as the proxy.

e Clone the repository

Clone the repository at https://github.com/jaresan/sparql-proxy/.

2lhttps://github.com/jaresan/lod-cloud/blob/master/unesco.ttl
2Zhttps://expressjs.com/

96

https://github.com/jaresan/sparql-proxy/
https://github.com/jaresan/lod-cloud/blob/master/unesco.ttl
https://expressjs.com/

e Deploy the proxy Express application
Follow basic deployment steps.

The steps to deploy an Express application are not a part of this work since
there are various hosting services with their specific guides each.

e Change the application proxy path

To use the proxy, you have to change src/@0constants/api. js:

const root = ’YOUR_PROXY_PATH_HERE’;
const useProxy = true;

This application is submitted using a proxy running at https://simplod.
herokuapp.com/.

Not using a proxy can result in failing to fetch human readable labels for
the entities in the list view and potentially failing query execution due to the
endpoint not being set up correctly.

5.2.4 Deployment

There are only few steps the administrator has to take to deploy the application.
The steps are written utilizing npm@ but the same pattern can be followed when
using other package managers:

Direct build download

For convenience, the build ﬁleﬂ are committed as well in the repository. The
deployment steps in that case are as follows:

1. Download the repository| as zip

Figure 5.102: Download as zip

¥ master ~ ¥ 20 branches © 0 tags Go to file Add file ~ - Code ~
° jaresan Commit the build B Clone ®

HTTPS SSH GitHub CLI

-storybook Refactoring https://github.com/jaresan/simplod.git (]

build Commit the build Use Git or checkout with SVN using the web URL.

docs Rename loadingModel to importin
X Open with GitHub Desktop

o

public Delete examples.pdf B Download zip &

meetings Update Todo.md

2. Upload the build file to your hosting and specify index.html as the entry-
point

Bhttps://www.npmjs.com/
2 https://github.com/jaresan/simplod/tree/master/build
ZPhttps://github.com/jaresan/simplod/

97

https://simplod.herokuapp.com/
https://simplod.herokuapp.com/
https://www.npmjs.com/
https://github.com/jaresan/simplod/tree/master/build
https://github.com/jaresan/simplod/

Project deployment

Since this application has been developed with Creact React Ap, the adminis-
trators can also follow the steps outlined on the React deployment pag directly,
hosting via npm start.

1. Clone the repository
First, clone the repository at https://github.com/jaresan/simplod.

2. Install the dependencies

From inside the repository, run npm install.

3. Build the repository
Build the production version of the repository by running npm run build
inside the repository.

4. Publish build and expose build/index.html

Upload the build directory to a hosting service and make index.html acces-

sible.

This work also includes a herok postbuild hoo, meaning all new pushed
changes to heroku are automatically built.

In conclusion, as terminal commands, the steps could be summed up as fol-
lows:

... cd to the location you want to save this project

git clone https://github.com/jaresan/simplod your_project_name
cd your_project_name

npm install

npm run build

upload ./build to a hosting site and make index.html accessible

5.2.5 Application parameters

When deployed, the administrator is able to change the data with which the appli-
cation opens by utilizing one of the three available parameters in the application
URL.

e schemaURL=
URL of the data schema to load. For example:
https://jaresan.github.io/simplod/example.ttl

Z6https://github.com/facebook/create-react-app
2Thttps://create-react-app.dev/docs/deployment/
28nttps://www.heroku.com/
2nttps://devcenter.heroku.com/articles/nodejs-support#
customizing-the-build-process

98

https://github.com/jaresan/simplod
https://jaresan.github.io/simplod/example.ttl
https://github.com/facebook/create-react-app
https://create-react-app.dev/docs/deployment/
https://www.heroku.com/
https://devcenter.heroku.com/articles/nodejs-support%23customizing-the-build-process
https://devcenter.heroku.com/articles/nodejs-support%23customizing-the-build-process

e endpointURL=
SPARQL endpoint to be set in the application.
For example https://data.nobelprize.org/store/sparql.

e modelURL=

URL of a project file to load, acting in the same way as File — Load — By
URI. This option overrides both schemaURL= and endpointURL=

For example: https://jaresan.inrupt.net/german_books. json
Example usage:

e index.html path
https://jaresan.github.io/simplod/build/index.html

e Data schema

https://jaresan.github.io/simplod/example.ttl

e Endpoint
https://data.nobelprize.org/store/sparql

e Project

https://jaresan.inrupt.net/german books. json

The link pointing to the application would have these two added as URL
param{®| named schemaURL and endpointURL.

With the parameters set up, we get a lin pointing to the instantiated ap-
plication with the data schema and endpoint, or a linkFr_T] to the application with
project file to be loaded.

5.3 Programmer documentation

This section gives a basic overview of the application for the developers. The first
part describes how to set up the development environment locally, following with
a brief description of the code structure and examples of new features and how to
implement them. Lastly, automatically generated documentation from the code
is mentioned.

3%https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams

3Thttps://jaresan.github.io/simplod/build/index.html?schemaURL=https:
//jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.
org/store/sparql

3“https://jaresan.github.io/simplod/build/index.html?modelURL=https:
//jaresan.inrupt.net/german_books. json

99

https://data.nobelprize.org/store/sparql
https://jaresan.inrupt.net/german_books.json
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql
https://jaresan.inrupt.net/german_books.json
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?modelURL=https://jaresan.inrupt.net/german_books.json
https://jaresan.github.io/simplod/build/index.html?modelURL=https://jaresan.inrupt.net/german_books.json

5.3.1 Prerequisites

The minimum required configuration for developing the application:

1. NodeJ$*3|
Version > 10.0.

2. Npnf]

This documentation is written for npm, but other package managers, e.g.
yarn®| can be used as well.

5.3.2 Local development setup

e Clone the repository

First, clone the repository at https://github.com/jaresan/simplod.

e Install the dependencies

From inside the repository, run npm install.

e Run local environment

From inside the repository, run npm run start:dev. After running the
command, the application will be available on http://localhost:3000. If
you want to run a version with SSL on, you can use

npm run start:dev:https.
Run this way, the server listens to changes to the codebase, and reloads the
application if any are detected.

e OPTIONAL - Add localhost to your trusted apps

If you wish to use a Solid Pod while running the application locally, you
have to add the hosting address to your Solid Pod. This can be done
automatically through signing to the Solid Pod in the upper right corner,

or by following the steps mentions in

e OPTIONAL - Link SPARQL Proxy
Add SPARQL Proxy based on [subsection 5.2.3]
This work is submitted with a proxy avaiable on Heroku|

5.3.3 Overview

This subsection provides an overview of the application state and code structure.

33https://nodejs.org/en/
34https://www.npmjs.com/
3%https://yarnpkg.com/
3%https://simplod.herokuapp.com

100

https://github.com/jaresan/simplod
http://localhost:3000
https://nodejs.org/en/
https://www.npmjs.com/
https://yarnpkg.com/
https://simplod.herokuapp.com

Redux state

As mentioned in [section 3.4, Redux is used for handling the application state.
The whole state is split up into 5 separate sub-states as follows:

{

"solid": {%},
"model": {%},
"settings": {},
"controls": {J},
"yasgui": {}

solid

Represents the authentication state. Contains user’s information and their
session.

model

Represents all of the data in the application that can be exported. When a
user saves/downloads the project file, the file they create is a direct copy
of this sub-state. Importing a file directly replaces this sub-state.
settings

User’s specific settings, e.g. language, view layout.

controls

Contains arbitrary information used to help render components interac-
tively to the user. For example contains the currently selected edge, which
is used to highlight the edge and display the properties it represents.

yasgui

YASGUI specific information. Contains the currently parsed query and the
YASGUI instance.

Detailed description of the state can be found on GitHub|

Folder structure

The source files of the application are split into folders as follows:

e QOactions

More complex actions that can be triggered throughout the application and
can trigger state changes.

e QQapp-state

State handling functionality for every sub-state of the application and the
definition of the main reducer and how changes propagate to the store.

3Thttps://github.com/jaresan/simplod/tree/master/src/%40%40app-state

101

https://github.com/jaresan/simplod/tree/master/src/@@app-state

e QQ@components

All React components in the application split further into:

— controls

Helper interaction components, for example modals, confirm dialogs.
— entityList

List view, allowing the user to interact with the data set via a list

component instead of through the graph.

— menu

All menu components, e.g. the menu bar, save/load menu, share menu.
e QQconstants
Declaration of the constants used throghout the application.

e QQ@data

Data handling, be it graph calculations, parsint .ttl files or the SPARQL
query itself.

e 0O@graph

All of the graph layer, as described in [subsection 3.3.1, the graph library
used is AntV. The graph folder is split further into two more folders:

— wWrappers

Classes wrapping the interaction with the actual graph elements and
reacting to it.

— handlers

Classes handling and triggering state changes, as opposed to wrappers,
these classes don’t react to user interactions directly.

e QQ@selectors

State selectors, used by the components to subscribe to specific subsets of
the application state.

More thorough description of all files with generated code documentation by
JsDod®] can be found on GitHuhb?’l

5.3.4 Implementation examples

This subsections describes an example of how to implement some features that
are not present in the application.

38https://jsdoc.app/
3%https://jaresan.github.io/simplod/documentation

102

https://jsdoc.app/
https://jaresan.github.io/simplod/documentation

Hide rest — Delete rest

As mentioned in [subsection 5.1.3| the # ”“Hide rest” hides all entities that are
not selected via any means. For this exmaple let’s change this to delete all such
entities instead of hiding them.

Checking the source code, we can find the button in the graph component
in @@components/GraphContainer.js. Following the functionality, we can see
that the main logic taking place is implemented in @@app-state/model/state’s
hideUnselected. To build it in a similar way, we could do the following:

export const deleteUnselected = s => {
const properties = pipe(
getProperties,
filter(prop(’selected’)),
values
) (s);
const toKeep = properties
.reduce((acc, p) => Object.assign(acc, {
[p.target]: true,
[p.source]: true

B, AD;

const toDelete = keys(
filter(
c => lc.selected,
omit (keys(toKeep), view(classes, s))

));

return toDelete.reduce((acc, id) => deleteClass(id, acc), s);

If you test this out, you will see that while the entities disappeared from the
list view, they remained intact in the graph. This is because the graph items
have to be handled separately and deleted directly in the graph. Luckily there’s
already a static method onDeleteEntity in @@graph/Graph. js, which handles
both. This means we just have to find ids we would like to delete and pass them
to onDeleteEntity.

The simplest way would be to add a selector to @@selectors akin to the
following;:

export const getlgnoredEntitylds = s => {
const properties = pipe(
getProperties,
filter(prop(’selected’)),
values
) (s);
const toKeep = properties
.reduce((acc, p) => Object.assign(acc, {
[p.target]: true,

103

[p.source]: true

B, AD;

return keys(
filter(
c => lc.selected,
omit (keys(toKeep), getClasses(s))

)
};

This way, we get a function that return ids of entities that could potentially
be completely deleted. Now we just have to extract this information from the
state somewhere and add a control element to handle the graph method invoca-
tion. This can be simply added to @@components/GraphContainer. js. The full
implementation of this feature can be found in a pull requesﬂzﬂ on GitHub.

Custom schema node layout

Another example that might be interesting to implement is implementing a new
node layout. Based on the AntV documentation@ we can see that nodes expose a
updatePosition method. To implement this then, we just need to add a method
to the graph handler and lay out the nodes based on predefined criteria. For the
sake of simplicity let’s go with a simple grid layout.

All graph functionality related to the canvas and its data is contained in
@@graph/Graph. js. We just need to implement a simple static method that
accesses the graph instance, gets its nodes and updates their positions. It could
look something like the following:

static gridLayout() {
const rowCount = 5;
const columnGap = 250;
const rowGap = 200;
const nodes = this.instance.getNodes();

let rowIndex = 0;
let columnIndex = 0;
nodes.forEach(n => {
n.updatePosition({
x: columnIndex * columnGap,
y: rowlIndex * rowGap

o)

n.getEdges() .forEach(e => e.refresh());
// Edges need to be refreshed to properly link to the nodes,
// otherwise they stay in empty space

4Ohttps://github.com/jaresan/simplod/pull/28
https://g6.antv.vision/en/docs/api/Items/itemMethods

104

https://github.com/jaresan/simplod/pull/28
https://g6.antv.vision/en/docs/api/Items/itemMethods

columnIndex++;
if (columnIndex === rowCount) {
columnIndex = 0;
rowIndex++;
}
b
}

The only thing left to do is to tie a call to this method through a control
element in the graph. Complete implementation of this feature can be found in
a pull request[zizl on GitHub.

5.3.5 Automatically generated documentation

This work also includes generated documentation from the JavaScript annotations
inside the codebase using JsDod™]
The documentation is accessible directly on GitHub Pages™]

4Zhttps://github.com/jaresan/simplod/pull/29
43https://github.com/jsdoc/jsdoc
“https://jaresan.github.io/simplod/documentation

105

https://github.com/jaresan/simplod/pull/29
https://github.com/jsdoc/jsdoc
https://jaresan.github.io/simplod/documentation

A. Solid Pod troubleshooting

This chapter describes manual setup of Solid Pods in detail, should the steps
outlined in lsubsection 5.1.1] fail.

A.1 Logging in with Solid Pod

To set up all permissions for the application, the user has to sign inE] to their
Solid Pod first.

After signing in, the user can navigate in the application utilizing a tooltip
menu by hovering over their avatar in the top right corner.

In the following sections navigating to a certain part of the Solid Pod takes
this menu into account and references it.

Figure A.1: Solid Pod menu

<>
Show your profile
Your stuff
Preferences
Edit your profile
Your storage

Log out

A.2 Enabling trusted apps

To allow the application to manipulate data in the Solid Pod, it has to be added
to the Solid Pod’s trusted sources. The application can be marked as trusted by
following these steps:

e Go to "Preferences” in the menu

e Go to "Manage your trusted applications” section and add the URL where
the application is hosted, as a demo example https://jaresan.github.io
can be used as the application URL

Note: Make sure you omit the trailing slash, i.e. https://hosting.com,
not https://hosting.com/

e Check "Read”, "Write”, "Append” privileges

e Click on "Add”

'https://solid.community/login

128

https://jaresan.github.io
https://hosting.com
https://hosting.com/
https://solid.community/login

This allows the application to manipulate data in the user’s Solid Pod when
they are logged in via their Solid Pod providing entity.

Figure A.2: Trusted applications
o

=Nz

Yourstuff Preferences Edit your profile Your storage

User types
Here you can self-assign user types to help the data browser know which views you would like to access.

Read more

Personal information

“This information s private.

Power user|
Developer

Manage your trusted applications

Here you can manage the applications you trust.

lication URL Access modes Actions
ttpsi/jaresan.github.io @ReadWriteAppend_Control
Write new URL here [GRead Write_JAppend_IControl
Notes

1. Trusted applications will get access to all resources that you have access to
2. You can limit which modes they have by default.
3. They will not gain more access than you have.

Application URLs must be valid URL. Examples are hitp://localhost:3000, https://rusted.app, and https://sub.trusted.app.

A.3 Creating a save destination

To create a new folder where the application data could be stored, the user can
follow the steps below:

Go to "Your storage” in the menu

Click the green plus button

Select the folder icon and choose new folder name
Click the green check button

The newly created folder can be found at
https://USERNAME. solid.community/FOLDER_NAME

where USERNAME and FOLDER_NAME represent the user’s Solid Pod
login and the folder name chosen in the previous steps respectively

129

Figure A.3: Creating a folder

Your stuff Preferences Edit your profile Your storage

ra
»favicon.ico
»inbox
»private

» profile
»public
»robots. txt
» settings

+ O

folder name:

’ test|

X v

130

	Introduction
	What is Linked Data?
	What is a Solid Pod?
	Goals
	Thesis structure

	Analysis
	Target audience
	User roles
	Requirements
	Functional requirements
	Non-functional requirements

	Use cases
	Administrator
	User

	Application inputs
	SPARQL endpoint
	Data schema

	Existing solutions
	Comparison criteria
	Solution comparison

	Design
	Type of application
	Web application advantages:
	Desktop application advantages:
	Conclusion

	Storage options
	Local file system
	Cloud solutions
	Solid Pods
	Chosen solution

	Language
	Libraries & Frameworks

	Application architecture
	View layer
	Application logic
	Persistent data handling, Solid Pods
	SPARQL Editor
	Overview

	Mockups
	Title page
	User information
	Data area
	Query editor

	Implementation
	Limited mobile experience
	State handling with Ramda
	SPARQL Proxy
	Interesting implementation tasks
	SPARQL generation
	Cartesian product detection
	Optionality cycles

	Room for improvement
	Graph tool
	Query improvements

	Documentation
	User documentation
	Solid Pod setup
	UI Elements
	Graph interface
	List view
	Examples

	Administrator documentation
	Prerequisites
	Data schema creation
	SPARQL proxy
	Deployment
	Application parameters

	Programmer documentation
	Prerequisites
	Local development setup
	Overview
	Implementation examples
	Automatically generated documentation

	Tests
	Unit testing
	Libraries
	Covered code

	Manual test scenarios
	Preliminaries
	T1 - Visualization and simple configuration
	T2 - Language selection
	T3 - Offline capabilities
	T4 - Data handling
	T5 - SPARQL Capabilities
	T6 - Graph interactions

	Evaluation
	Goal fulfillment
	System usability scale results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Solid Pod troubleshooting
	Logging in with Solid Pod
	Enabling trusted apps
	Creating a save destination

	Attachments

